Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 90(19): 8842-54, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466414

RESUMO

UNLABELLED: The encouraging results of the RV144 vaccine trial have spurred interest in poxvirus prime-protein boost human immunodeficiency virus (HIV) vaccine modalities as a strategy to induce protective immunity. Because vaccine-induced protective immunity is critically determined by HIV envelope (Env) conformation, significant efforts are directed toward generating soluble trimeric Env immunogens that assume native structures. Using the simian immunodeficiency virus (SIV)-macaque model, we tested the immunogenicity and efficacy of sequential immunizations with DNA (D), modified vaccinia virus Ankara (MVA) (M), and protein immunogens, all expressing virus-like particles (VLPs) displaying membrane-anchored trimeric Env. A single VLP protein boost displaying trimeric gp160 adjuvanted with nanoparticle-encapsulated Toll-like receptor 4/7/8 (TLR4/7/8) agonists, administered 44 weeks after the second MVA immunization, induced up to a 3-fold increase in Env-specific IgG binding titers in serum and mucosa. Importantly, the VLP protein boost increased binding antibody against scaffolded V1V2, antibody-dependent phagocytic activity against VLP-coated beads, and antibody breadth and neutralizing antibody titers against homologous and heterologous tier 1 SIVs. Following 5 weekly intrarectal SIVmac251 challenges, two of seven DNA/MVA and VLP (DM+VLP)-vaccinated animals were completely protected compared to productive infection in all seven DM-vaccinated animals. Vaccinated animals demonstrated stronger acute viral pulldown than controls, but a trend for higher acute viremia was observed in the DM+VLP group, likely due to a slower recall of Gag-specific CD8 T cells. Our findings support immunization with VLPs containing trimeric Env as a strategy to augment protective antibody but underscore the need for optimal engagement of CD8 T cells to achieve robust early viral control. IMPORTANCE: The development of an effective HIV vaccine remains a global necessity for preventing HIV infection and reducing the burden of AIDS. While this goal represents a formidable challenge, the modest efficacy of the RV144 trial indicates that multicomponent vaccination regimens that elicit both cellular and humoral immune responses can prevent HIV infection in humans. However, whether protein immunizations synergize with DNA prime-viral vector boosts to enhance cellular and humoral immune responses remains poorly understood. We addressed this question in a nonhuman primate model, and our findings show benefit for sequential protein immunization combined with a potent adjuvant in boosting antibody titers induced by a preceding DNA/MVA immunization. This promising strategy can be further developed to enhance neutralizing antibody responses and boost CD8 T cells to provide robust protection and viral control.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas de DNA/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Portadores de Fármacos , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Resultado do Tratamento , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vaccinia virus/genética , Proteínas do Envelope Viral/genética , Viremia/prevenção & controle
2.
J Immunol ; 195(3): 994-1005, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116502

RESUMO

The goal of an HIV vaccine is to generate robust and durable protective Ab. Vital to this goal is the induction of CD4(+) T follicular helper (TFH) cells. However, very little is known about the TFH response to HIV vaccination and its relative contribution to magnitude and quality of vaccine-elicited Ab titers. In this study, we investigated these questions in the context of a DNA/modified vaccinia virus Ankara SIV vaccine with and without gp140 boost in aluminum hydroxide in rhesus macaques. In addition, we determined the frequency of vaccine-induced CD4(+) T cells coexpressing chemokine receptor, CXCR5 (facilitates migration to B cell follicles) in blood and whether these responses were representative of lymph node TFH responses. We show that booster modified vaccinia virus Ankara immunization induced a distinct and transient accumulation of proliferating CXCR5(+) and CXCR5(-) CD4 T cells in blood at day 7 postimmunization, and the frequency of the former but not the latter correlated with TFH and B cell responses in germinal centers of the lymph node. Interestingly, gp140 boost induced a skewing toward CXCR3 expression on germinal center TFH cells, which was strongly associated with longevity, avidity, and neutralization potential of vaccine-elicited Ab response. However, CXCR3(+) cells preferentially expressed the HIV coreceptor CCR5, and vaccine-induced CXCR3(+)CXCR5(+) cells showed a moderate positive association with peak viremia following SIV251 infection. Taken together, our findings demonstrate that vaccine regimens that elicit CXCR3-biased TFH cell responses favor Ab persistence and avidity but may predispose to higher acute viremia in the event of breakthrough infections.


Assuntos
Vacinas contra a SAIDS/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Viremia/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/biossíntese , Linfonodos/citologia , Linfonodos/imunologia , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/biossíntese , Receptores CCR5/biossíntese , Receptores CXCR3/biossíntese , Receptores CXCR5/biossíntese , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação/veterinária , Vacinas de DNA , Carga Viral/imunologia , Viremia/virologia
3.
J Virol ; 89(8): 4690-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653428

RESUMO

Here, we show that a CD40L-adjuvanted DNA/modified vaccinia virus Ankara (MVA) simian immunodeficiency virus (SIV) vaccine enhances protection against a pathogenic neutralization-resistant mucosal SIV infection, improves long-term viral control, and prevents AIDS. Analyses of serum IgG antibodies to linear peptides of SIV Env revealed a strong response to V2, with targeting of fewer epitopes in the immunodominant region of gp41 (gp41-ID) and the V1 region as a correlate for enhanced protection. Greater expansion of antiviral CD8 T cells in the gut correlated with long-term viral control.


Assuntos
Adjuvantes Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra a SAIDS/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vaccinia virus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Ligante de CD40/administração & dosagem , Ligante de CD40/farmacologia , Mapeamento de Epitopos , Imunidade Celular , Imunoglobulina G/sangue , Estimativa de Kaplan-Meier , Macaca mulatta , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vaccinia virus/genética
4.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831007

RESUMO

Cancer cells shed a heterogenous mixture of extracellular vesicles (EVs), differing in both size and composition, which likely influence physiological processes in different manners. However, how cells differentially control the shedding of these EV populations is poorly understood. Here, we show that miR-1227, which is enriched in prostate cancer EVs, compared to the cell of origin, but not in EVs derived from prostate benign epithelial cells, induces the shedding of large EVs (such as large oncosomes), while inhibiting the shedding of small EVs (such as exosomes). RNA sequencing from cells stably expressing miR-1227, a modified RISCTRAP assay that stabilizes and purifies mRNA-miR-1227 complexes for RNA sequencing, and in silico target prediction tools were used to identify miR-1227 targets that may mediate this alteration in EV shedding. The COPII vesicle protein SEC23A emerged and was validated by qPCR, WBlot, and luciferase assays as a direct target of miR-1227. The inhibition of SEC23A was sufficient to induce the shedding of large EVs. These results identify a novel mechanism of EV shedding, by which the inhibition of SEC23A by miR-1227 induces a shift in EV shedding, favoring the shedding of large EV over small EV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA