Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Biochem Funct ; 32(3): 287-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24301255

RESUMO

We investigated the efficacy of rosmarinic acid (RA) in preventing lipid peroxidation and increased activity of acetylcholinesterase (AChE) in the brain of streptozotocin-induced diabetic rats. The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol and diabetic/RA 10 mg/kg. After 21 days of treatment with RA, the cerebral structures (striatum, cortex and hippocampus) were removed for experimental assays. The results demonstrated that the treatment with RA (10 mg/kg) significantly reduced the level of lipid peroxidation in hippocampus (28%), cortex (38%) and striatum (47%) of diabetic rats when compared with the control. In addition, it was found that hyperglycaemia caused significant increased in the activity of AChE in hippocampus (58%), cortex (46%) and striatum (30%) in comparison with the control. On the other hand, the treatment with RA reversed this effect to the level of control after 3 weeks. In conclusion, the present findings showed that treatment with RA prevents the lipid peroxidation and consequently the increase in AChE activity in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and prevent damage oxidative in brain in the diabetic state. Thus, we can suggest that RA could be a promising compound in the complementary therapy in diabetes.


Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Masculino , Ratos , Ratos Wistar , Estreptozocina , Ácido Rosmarínico
2.
Redox Rep ; 22(6): 493-500, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28482759

RESUMO

OBJECTIVE: Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na+-K+-ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain. METHODS: Animals were divided into groups: control, caffeine (4 mg/kg), caffeine (8 mg/kg), HIIT, HIIT plus caffeine (4 mg/kg) and HIIT plus caffeine (8 mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na+-K+-ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain. RESULTS AND DISCUSSION: HIIT-induced anxiolytic-like behaviour increased Na+-K+-ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na+-K+-ATPase activities.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Cafeína/uso terapêutico , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
Biomed Pharmacother ; 89: 116-123, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28222393

RESUMO

The use of ergogenic substances such as caffeine has become a strategy to enhance sports performance. In the present study we evaluated the effects of high-intensity interval training (HIIT) associated with caffeine intake on acetylcholinesterase (AChE) and Ca2+ATPase activity and glycogen levels in the muscles of rats were evaluated. The animals were divided in groups: control, caffeine 4 or 8mg/kg, HIIT, HIIT plus caffeine 4 or caffeine 8mg/kg. Our results showed a decrease in glycogen levels in muscle in all trained groups after acute session exercise, while that an increase in glycogen levels was observed in all groups in relation to control in chronic exercise protocol. HIIT increases the thickness of the left ventricle and the Ca2+-ATPase activity and decrease the AChE activity in gastrocnemius muscle. Caffeine treatment prevents changes in enzymes activities as well as left ventricular hypertrophy adaptation induced by HIIT. Our findings suggest that caffeine modulates crucial pathways for muscle contraction in HIIT.


Assuntos
Cafeína/farmacologia , Treinamento Intervalado de Alta Intensidade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Inibidores de Fosfodiesterase/farmacologia , Condicionamento Físico Animal/fisiologia , Acetilcolinesterase/metabolismo , Adaptação Fisiológica , Animais , ATPases Transportadoras de Cálcio/metabolismo , Glicogênio/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Masculino , Músculo Esquelético/enzimologia , Ratos , Ratos Wistar , Natação/fisiologia
4.
J Nutr Biochem ; 26(4): 378-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25632845

RESUMO

The aim of this study was to investigate the protective effect of anthocyanins (ANT) on oxidative and inflammatory parameters, as well as ion pump activities, in the pons of rats experimentally demyelinated with ethidium bromide (EB). Rats were divided in six groups: control, ANT 30 mg/kg, ANT 100 mg/kg, EB (0.1%), EB plus ANT 30 mg/kg and EB plus ANT 100 mg/kg. The EB cistern pons injection occurred on the first day. On day 7, there was a peak in the demyelination. During the 7 days, the animals were treated once per day with vehicle or ANT. It was observed that demyelination reduced Na(+),K(+)-ATPase and Ca(2+)-ATPase activities and increased 4-hydroxynonenal, malondialdehyde, protein carbonyl and NO2plus NO3 levels. In addition, a depletion of glutathione reduced level/nonprotein thiol content and a decrease in superoxide dismutase activity were also seen. The dose of 100 mg/kg showed a better dose-response to the protective effects. The demyelination did not affect the neuronal viability but did increase the inflammatory infiltrate (myeloperoxidase activity) followed by an elevation in interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and interferon-γ levels. ANT promoted a reduction in cellular infiltration and proinflammatory mediators. Furthermore, ANT restored the levels of IL-10. Luxol fast blue staining confirmed the loss of myelin in the EB group and the protective effect of ANT 100 mg/kg. In conclusion, this study was the first to show that ANT are able to restore ion pump activities and protect cellular components against the inflammatory and oxidative damages induced by demyelination.


Assuntos
Antocianinas/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Inflamação/metabolismo , Bombas de Íon/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Aldeídos/metabolismo , Animais , Antioxidantes/farmacologia , ATPases Transportadoras de Cálcio/metabolismo , Etídio/efeitos adversos , Glutationa/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Bombas de Íon/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Dev Neurosci ; 33: 88-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374256

RESUMO

Anthocyanins are a group of natural phenolic compounds responsible for the color to plants and fruits. These compounds might have beneficial effects on memory and have antioxidant properties. In the present study we have investigated the therapeutic efficacy of anthocyanins in an animal model of cognitive deficits, associated to Alzheimer's disease, induced by scopolamine. We evaluated whether anthocyanins protect the effects caused by SCO on nitrite/nitrate (NOx) levels and Na(+),K(+)-ATPase and Ca(2+)-ATPase and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus (of rats. We used 4 different groups of animals: control (CTRL), anthocyanins treated (ANT), scopolamine-challenged (SCO), and scopolamine+anthocyanins (SCO+ANT). After seven days of treatment with ANT (200mgkg(-1); oral), the animals were SCO injected (1mgkg(-1); IP) and were performed the behavior tests, and submitted to euthanasia. A memory deficit was found in SCO group, but ANT treatment prevented this impairment of memory (P<0.05). The ANT treatment per se had an anxiolytic effect. AChE activity was increased in both in cortex and hippocampus of SCO group, this effect was significantly attenuated by ANT (P<0.05). SCO decreased Na(+),K(+)-ATPase and Ca(2+)-ATPase activities in hippocampus, and ANT was able to significantly (P<0.05) prevent these effects. No significant alteration was found on NOx levels among the groups. In conclusion, the ANT is able to regulate cholinergic neurotransmission and restore the Na(+),K(+)-ATPase and Ca(2+)-ATPase activities, and also prevented memory deficits caused by scopolamine administration.


Assuntos
Acetilcolinesterase/metabolismo , Amnésia/enzimologia , Amnésia/prevenção & controle , Antocianinas/uso terapêutico , Encéfalo/enzimologia , Fármacos Neuroprotetores/uso terapêutico , Amnésia/induzido quimicamente , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Antagonistas Colinérgicos/toxicidade , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Lactato Desidrogenases/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Escopolamina/toxicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/enzimologia , Fatores de Tempo
6.
J Physiol Biochem ; 70(2): 487-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623516

RESUMO

The aim of this study was to assess whether α-tocopherol administration prevented alterations in the ectonucleotidase activities and platelet aggregation induced by high-fat diet in rats. Thus, we examined four groups of male rats which received standard diet, high-fat diet (HFD), α-tocopherol (α-Toc), and high-fat diet plus α-tocopherol. HFD was administered ad libitum and α-Toc by gavage using a dose of 50 mg/kg. After 3 months of treatment, animals were submitted to euthanasia, and blood samples were collected for biochemical assays. Results demonstrate that NTPDase, ectonucleotide pyrophosphatase/phosphodiesterase, and 5'-nucleotidase activities were significantly decreased in platelets of HFD group, while that adenosine deaminase (ADA) activity was significantly increased in this group in comparison to the other groups (P < 0.05). When rats that received HFD were treated with α-Toc, the activities of these enzymes were similar to the control, but ADA activity was significantly increased in relation to the control and α-Toc group (P < 0.05). HFD group showed an increased in platelet aggregation in comparison to the other groups, and treatment with α-Toc significantly reduced platelet aggregation in this group. These findings demonstrated that HFD alters platelet aggregation and purinergic signaling in the platelets and that treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition.


Assuntos
Dieta Hiperlipídica , Nucleotídeos/metabolismo , Agregação Plaquetária , alfa-Tocoferol/farmacologia , Animais , Ratos
7.
Life Sci ; 91(23-24): 1221-8, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-23044227

RESUMO

AIMS: We investigated whether the treatment with anthocyanins prevents the scopolamine-induced memory deficits and whether ectonucleotidase activities and purine levels are altered in the cerebral cortex (CC) and hippocampus (HC) in this model of mnemonic deficit in rats. MAIN METHODS: The animals were divided into 4 experimental groups: control (vehicle), anthocyanins (Antho), scopolamine (SCO), and scopolamine plus anthocyanins (SCO+Antho). After seven days of treatment, they were tested in the inhibitory avoidance task and open field test and submitted to euthanasia. The CC and the HC were collected for biochemical assays. The effect of treatment with Antho (200 mgkg(-1), i.p.) was investigated in rats trained to a stable level of performance and post-treated with SCO (1 mgkg(-1), i.p. 30 min after training). KEY FINDINGS: The treatment with SCO decreased the step-down latency in inhibitory avoidance task. Antho prevented the scopolamine-induced memory impairment and also the increase of NTPDase activity in the CC and HC. Furthermore, the treatment with anthocyanins prevents the decrease in 5'-nucleotidase activity and the increase in adenosine deaminase activity induced by SCO in HC. In addition, the treatment with Antho prevented the decrease in ATP levels induced by SCO in the CC and HC. SIGNIFICANCE: Our results show that scopolamine may affect purinergic enzymatic cascade or cause alterations in energy metabolism inducing loss of memory. In contrast Antho could reverse these changes, suggesting a neuroprotective effect of Antho on ectonucleotidase activities and neuronal energetic metabolism.


Assuntos
Antocianinas/farmacologia , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Nucleotidases/metabolismo , Escopolamina/toxicidade , Análise de Variância , Animais , Antocianinas/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , L-Lactato Desidrogenase/metabolismo , Masculino , Ratos , Ratos Wistar , Sinaptossomos/metabolismo
8.
J. physiol. biochem ; 70(2): 487-496, jun. 2014.
Artigo em Inglês | IBECS (Espanha) | ID: ibc-122969

RESUMO

The aim of this study was to assess whether alfa-tocopherol administration prevented alterations in the ectonucleotidase activities and platelet aggregation induced by high-fat diet in rats. Thus, we examined four groups of male rats which received standard diet, high-fat diet (HFD), α-tocopherol (α-Toc), and high-fat diet plus α-tocopherol. HFD was administered ad libitum and α-Toc by gavage using a dose of 50 mg/kg. After 3 months of treatment, animals were submitted to euthanasia, and blood samples were collected for biochemical assays. Results demonstrate that NTPDase, ectonucleotide pyrophosphatase/phosphodiesterase, and 5'-nucleotidase activities were significantly decreased in platelets of HFD group, while that adenosine deaminase (ADA) activity was significantly increased in this group in comparison to the other groups (P < 0.05). When rats that received HFD were treated with α-Toc, the activities of these enzymes were similar to the control, but ADA activity was significantly increased in relation to the control and α-Toc group (P < 0.05). HFD group showed an increased in platelet aggregation in comparison to the other groups, and treatment with α-Toc significantly reduced platelet aggregation in this group. These findings demonstrated that HFD alters platelet aggregation and purinergic signaling in the platelets and that treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition


No disponible


Assuntos
Animais , Ratos , Proteína Receptora de AMP Cíclico , Nucleotídeos/fisiologia , Agregação Plaquetária , alfa-Tocoferol/farmacocinética , Gorduras na Dieta/metabolismo , Receptores Purinérgicos , Nucleotídeos de Adenina/fisiologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA