Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(3): H800-H811, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180452

RESUMO

Multielectrode arrays (MEAs) are the method of choice for electrophysiological characterization of cardiomyocyte monolayers. The field potentials recorded using an MEA are like extracellular electrograms recorded from the myocardium using conventional electrodes. Nevertheless, different criteria are used to interpret field potentials and extracellular electrograms, which hamper correct interpretation and translation to the patient. To validate the criteria for interpretation of field potentials, we used neonatal rat cardiomyocytes to generate monolayers. We recorded field potentials using an MEA and simultaneously recorded action potentials using sharp microelectrodes. In parallel, we recreated our experimental setting in silico and performed simulations. We show that the amplitude of the local RS complex of a field potential correlated with conduction velocity in silico but not in vitro. The peak time of the T wave in field potentials exhibited a strong correlation with APD90 while the steepest upslope correlated well with APD50. However, this relationship only holds when the T wave displayed a biphasic pattern. Next, we simulated local extracellular action potentials (LEAPs). The shape of the LEAP differed markedly from the shape of the local action potential, but the final duration of the LEAP coincided with APD90. Criteria for interpretation of extracellular electrograms should be applied to field potentials. This will provide a strong basis for the analysis of heterogeneity in conduction velocity and repolarization in cultured monolayers of cardiomyocytes. Finally, a LEAP is not a recording of the local action potential but is generated by intracellular current provided by neighboring cardiomyocytes and is superior to field potential duration in estimating APD90.NEW & NOTEWORTHY We present a physiological basis for the interpretation of multielectrode array-derived, extracellular, electrical signals.


Assuntos
Miocárdio , Miócitos Cardíacos , Humanos , Ratos , Animais , Miócitos Cardíacos/fisiologia , Arritmias Cardíacas , Microeletrodos , Potenciais de Ação/fisiologia
2.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363928

RESUMO

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Assuntos
Ventrículos do Coração , Coração , Humanos , Coração/fisiologia , Átrios do Coração , Modelos Cardiovasculares
3.
J Cardiovasc Electrophysiol ; 34(4): 984-993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738149

RESUMO

INTRODUCTION: Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as a valuable cardiac resynchronization therapy (CRT) delivery method. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical synchrony during CRT, HBP, LBBP, HBP with left ventricular (LV) epicardial lead (His-optimized CRT [HOT-CRT]), and LBBP with LV epicardial lead (LBBP-optimized CRT [LOT-CRT]) in patients with different conduction disease presentations using computational modeling. METHODS: We simulated ventricular activation on 24 four-chamber heart geometries, including His-Purkinje systems with proximal left bundle branch block (LBBB). We simulated septal scar, LV lateral wall scar, and mild and severe myocardium and LV His-Purkinje system conduction disease by decreasing the conduction velocity (CV) down to 70% and 35% of the healthy CV. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (90% of biventricular activation time [BIVAT-90]). RESULTS: Severe LV His-Purkinje conduction disease favored CRT (BIVAT-90: HBP 101.5 ± 7.8 ms vs. CRT 93.0 ± 8.9 ms, p < .05), with additional electrical synchrony induced by HOT-CRT (87.6 ± 6.7 ms, p < .05) and LOT-CRT (73.9 ± 7.6 ms, p < .05). Patients with slow myocardium CV benefit more from CSP compared to CRT (BIVAT-90: CRT 134.5 ± 24.1 ms; HBP 97.1 ± 9.9 ms, p < .01; LBBP: 101.5 ± 10.7 ms, p < .01). Septal but not lateral wall scar made CSP ineffective, while CRT was able to resynchronize the ventricles in the presence of septal scar (BIVAT-90: baseline 119.1 ± 10.8 ms vs. CRT 85.1 ± 14.9 ms, p < .01). CONCLUSION: Severe LV His-Purkinje conduction disease attenuates the benefits of CSP, with additional improvements achieved with HOT-CRT and LOT-CRT. Septal but not lateral wall scars make CSP ineffective.


Assuntos
Fascículo Atrioventricular , Cicatriz , Humanos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Miocárdio
4.
PLoS Comput Biol ; 18(3): e1009893, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312675

RESUMO

Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120-270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Eletrocardiografia , Átrios do Coração , Humanos
6.
J Cardiovasc Magn Reson ; 25(1): 78, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093273

RESUMO

BACKGROUND: While the microstructure of the left ventricle (LV) has been largely described, only a few studies investigated the right ventricular insertion point (RVIP). It was accepted that the aggregate cardiomyocytes organization was much more complex due to the intersection of the ventricular cavities but a precise structural characterization in the human heart was lacking even if clinical phenotypes related to right ventricular wall stress or arrhythmia were observed in this region. METHODS: MRI-derived anatomical imaging (150 µm3) and diffusion tensor imaging (600 µm3) were performed in large mammalian whole hearts (human: N = 5, sheep: N = 5). Fractional anisotropy, aggregate cardiomyocytes orientations and tractography were compared within both species. Aggregate cardiomyocytes orientation on one ex-vivo sheep whole heart was then computed using structure tensor imaging (STI) from 21 µm isotropic acquisition acquired with micro computed tomography (MicroCT) imaging. Macroscopic and histological examination were performed. Lastly, experimental cardiomyocytes orientation distribution was then compared to the usual rule-based model using electrophysiological (EP) modeling. Electrical activity was modeled with the monodomain formulation. RESULTS: The RVIP at the level of the inferior ventricular septum presented a unique arrangement of aggregate cardiomyocytes. An abrupt, mid-myocardial change in cardiomyocytes orientation was observed, delimiting a triangle-shaped region, present in both sheep and human hearts. FA's histogram distribution (mean ± std: 0.29 ± 0.06) of the identified region as well as the main dimension (22.2 mm ± 5.6 mm) was found homogeneous across samples and species. Averaged volume is 0.34 cm3 ± 0.15 cm3. Both local activation time (LAT) and morphology of pseudo-ECGs were strongly impacted with delayed LAT and change in peak-to-peak amplitude in the simulated wedge model. CONCLUSION: The study was the first to describe the 3D cardiomyocytes architecture of the basal inferoseptal left ventricle region in human hearts and identify the presence of a well-organized aggregate cardiomyocytes arrangement and cardiac structural discontinuities. The results might offer a better appreciation of clinical phenotypes like RVIP-late gadolinium enhancement or uncommon idiopathic ventricular arrhythmias (VA) originating from this region.


Assuntos
Imagem de Tensor de Difusão , Ventrículos do Coração , Humanos , Animais , Ovinos , Ventrículos do Coração/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Meios de Contraste , Microtomografia por Raio-X , Valor Preditivo dos Testes , Gadolínio , Miócitos Cardíacos/fisiologia , Arritmias Cardíacas , Mamíferos
7.
Europace ; 25(3): 1172-1182, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36609707

RESUMO

AIMS: Electroanatomical maps using automated conduction velocity (CV) algorithms are now being calculated using two-dimensional (2D) mapping tools. We studied the accuracy of mapping surface 2D CV, compared to the three-dimensional (3D) vectors, and the influence of mapping resolution in non-scarred animal and human heart models. METHODS AND RESULTS: Two models were used: a healthy porcine Langendorff model with transmural needle electrodes and a computer stimulation model of the ventricles built from an MRI-segmented, excised human heart. Local activation times (LATs) within the 3D volume of the mesh were used to calculate true 3D CVs (direction and velocity) for different pixel resolutions ranging between 500 µm and 4 mm (3D CVs). CV was also calculated for endocardial surface-only LATs (2D CV). In the experimental model, surface (2D) CV was faster on the epicardium (0.509 m/s) compared to the endocardium (0.262 m/s). In stimulation models, 2D CV significantly exceeded 3D CVs across all mapping resolutions and increased as resolution decreased. Three-dimensional and 2D left ventricle CV at 500 µm resolution increased from 429.2 ± 189.3 to 527.7 ± 253.8 mm/s (P < 0.01), respectively, with modest correlation (R = 0.64). Decreasing the resolution to 4 mm significantly increased 2D CV and weakened the correlation (R = 0.46). The majority of CV vectors were not parallel (<30°) to the mapping surface providing a potential mechanistic explanation for erroneous LAT-based CV over-estimation. CONCLUSION: Ventricular CV is overestimated when using 2D LAT-based CV calculation of the mapping surface and significantly compounded by mapping resolution. Three-dimensional electric field-based approaches are needed in mapping true CV on mapping surfaces.


Assuntos
Sistema de Condução Cardíaco , Ventrículos do Coração , Humanos , Animais , Suínos , Endocárdio , Pericárdio , Imageamento por Ressonância Magnética
8.
Am J Physiol Heart Circ Physiol ; 322(6): H936-H952, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302879

RESUMO

Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution.NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.


Assuntos
Imagem de Tensor de Difusão , Septo Interventricular , Animais , Diamante , Cães , Ventrículos do Coração , Mamíferos , Miocárdio , Ratos , Ovinos , Suínos , Septo Interventricular/diagnóstico por imagem
9.
PLoS Comput Biol ; 17(6): e1009137, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34191797

RESUMO

The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O'Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Biologia Computacional , Simulação por Computador , Fenômenos Eletrofisiológicos , Ventrículos do Coração/citologia , Humanos , Técnicas In Vitro , Modelos Animais , Técnicas de Patch-Clamp , Sus scrofa , Pesquisa Translacional Biomédica
10.
PLoS Comput Biol ; 17(4): e1008851, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33857152

RESUMO

Cardiac anatomy plays a crucial role in determining cardiac function. However, there is a poor understanding of how specific and localised anatomical changes affect different cardiac functional outputs. In this work, we test the hypothesis that in a statistical shape model (SSM), the modes that are most relevant for describing anatomy are also most important for determining the output of cardiac electromechanics simulations. We made patient-specific four-chamber heart meshes (n = 20) from cardiac CT images in asymptomatic subjects and created a SSM from 19 cases. Nine modes captured 90% of the anatomical variation in the SSM. Functional simulation outputs correlated best with modes 2, 3 and 9 on average (R = 0.49 ± 0.17, 0.37 ± 0.23 and 0.34 ± 0.17 respectively). We performed a global sensitivity analysis to identify the different modes responsible for different simulated electrical and mechanical measures of cardiac function. Modes 2 and 9 were the most important for determining simulated left ventricular mechanics and pressure-derived phenotypes. Mode 2 explained 28.56 ± 16.48% and 25.5 ± 20.85, and mode 9 explained 12.1 ± 8.74% and 13.54 ± 16.91% of the variances of mechanics and pressure-derived phenotypes, respectively. Electrophysiological biomarkers were explained by the interaction of 3 ± 1 modes. In the healthy adult human heart, shape modes that explain large portions of anatomical variance do not explain equivalent levels of electromechanical functional variation. As a result, in cardiac models, representing patient anatomy using a limited number of modes of anatomical variation can cause a loss in accuracy of simulated electromechanical function.


Assuntos
Coração/fisiologia , Modelos Cardiovasculares , Adulto , Voluntários Saudáveis , Coração/anatomia & histologia , Humanos , Tomografia Computadorizada por Raios X
11.
Am J Physiol Heart Circ Physiol ; 320(3): H1156-H1169, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449852

RESUMO

The TRPV4 channel is a calcium-permeable channel (PCa/PNa ∼ 10). Its expression has been reported in ventricular myocytes, where it is involved in several cardiac pathological mechanisms. In this study, we investigated the implication of TRPV4 in ventricular electrical activity. Left ventricular myocytes were isolated from trpv4+/+ and trpv4-/- mice. TRPV4 membrane expression and its colocalization with L-type calcium channels (Cav1.2) was confirmed using Western blot biotinylation, immunoprecipitation, and immunostaining experiments. Then, electrocardiograms (ECGs) and patch-clamp recordings showed shortened QTc and action potential (AP) duration in trpv4-/- compared with trpv4+/+ mice. Thus, TRPV4 activator GSK1016790A produced a transient and dose-dependent increase in AP duration at 90% of repolarization (APD90) in trpv4+/+ but not in trpv4-/- myocytes or when combined with TRPV4 inhibitor GSK2193874 (100 nM). Hence, GSK1016790A increased calcium transient (CaT) amplitude in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 carries an inward Ca2+ current in myocytes. Conversely, TRPV4 inhibitor GSK2193874 (100 nM) alone reduced APD90 in trpv4+/+ but not in trpv4-/- myocytes, suggesting that TRPV4 prolongs AP duration in basal condition. Finally, introducing TRPV4 parameters in a mathematical model predicted the development of an inward TRPV4 current during repolarization that increases AP duration and CaT amplitude, in accord with what was found experimentally. This study shows for the first time that TRPV4 modulates AP and QTc durations. It would be interesting to evaluate whether TRPV4 could be involved in long QT-mediated ventricular arrhythmias.NEW & NOTEWORTHY Transient receptor potential vanilloid 4 (TRPV4) is expressed at the membrane of mouse ventricular myocytes and colocalizes with non-T-tubular L-type calcium channels. Deletion of trpv4 gene in mice results in shortened QT interval on electrocardiogram and reduced action potential duration of ventricular myocytes. Pharmacological activation of TRPV4 channel leads to increased action potential duration and increased calcium transient amplitude in trpv4-/- but not in trpv4-/- ventricular myocytes. To the contrary, TRPV4 channel pharmacological inhibition reduces action potential duration in trpv4+/+ but not in trpv4-/- myocytes. Integration of TRPV4 channel in a computational model of mouse action potential shows that the channel carries an inward current contributing to slowing down action potential repolarization and to increase calcium transient amplitude, similarly to what is observed experimentally. This study highlights for the first time the involvement of TRPV4 channel in ventricular electrical activity.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPV/metabolismo , Função Ventricular Esquerda , Potenciais de Ação/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Simulação por Computador , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/farmacologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
12.
Europace ; 23(23 Suppl 1): i71-i79, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33463686

RESUMO

AIMS: Clinical observations suggest that the Purkinje network can be part of anatomical re-entry circuits in monomorphic or polymorphic ventricular arrhythmias. However, significant conduction delay is needed to support anatomical re-entry given the high conduction velocity within the Purkinje network. METHODS AND RESULTS: We investigated, in computer models, whether damage rendering the Purkinje network as either an active lesion with slow conduction or a passive lesion with no excitable ionic channel, could explain clinical observations. Active lesions had compromised sodium current and a severe reduction in gap junction coupling, while passive lesions remained coupled by gap junctions, but modelled the membrane as a fixed resistance. Both types of tissue could provide significant delays of over 100 ms. Electrograms consistent with those obtained clinically were reproduced. However, passive tissue could not support re-entry as electrotonic coupling across the delay effectively increased the proximal refractory period to an extremely long interval. Active tissue, conversely, could robustly maintain re-entry. CONCLUSION: Formation of anatomical re-entry using the Purkinje network is possible through highly reduced gap junctional coupling leading to slowed conduction.


Assuntos
Arritmias Cardíacas , Ramos Subendocárdicos , Simulação por Computador , Humanos
13.
Eur Heart J ; 41(48): 4556-4564, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32128588

RESUMO

Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.


Assuntos
Inteligência Artificial , Cardiologia , Algoritmos , Humanos , Medicina de Precisão
14.
Comput Methods Appl Mech Eng ; 386: 114092, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34630765

RESUMO

Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.

15.
J Mol Cell Cardiol ; 145: 122-132, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325153

RESUMO

Repolarization reserve, the robustness of a cell to repolarize even when one of the repolarization mechanisms is failing, has been described qualitatively in terms of ionic currents, but has not been quantified by a generic metric that is applicable to drug screening. Prolonged repolarization leading to repolarization failure is highly arrhythmogenic. It may lead to ventricular tachycardia caused by triggered activity from early afterdepolarizations (EADs), or it may promote the occurrence of unidirectional conduction block and reentry. Both types of arrhythmia may deteriorate into ventricular fibrillation (VF) and death. We define the Repolarization Reserve Current (RRC) as the minimum constant current necessary to prevent normal repolarization of a cell. After developing and testing RRC for nine computational ionic models of various species, we applied it experimentally to atrial and ventricular human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM), and isolated guinea-pig ventricular cardiomyocytes. In simulations, repolarization was all-or-none with a precise, model-dependent critical RRC, resulting in a discrete shift in the Action Potential Duration (APD) - RRC relation, in the occurrence of EADs and repolarization failure. These data were faithfully reproduced in cellular experiments. RRC allows simple, fast, unambiguous quantification of the arrhythmogenic propensity in cardiac cells of various origins and species without the need of prior knowledge of underlying currents and is suitable for high throughput applications, and personalized medicine applications.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Biomarcadores/metabolismo , Animais , Simulação por Computador , Cobaias , Ventrículos do Coração/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Íons , Miócitos Cardíacos/metabolismo , Preparações Farmacêuticas , Coelhos , Fatores de Risco
16.
Biophys J ; 116(3): 469-476, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30598284

RESUMO

Transient receptor potential melastatin member 4 (TRPM4) channels are nonselective monovalent cationic channels found in human atria and conduction system. Overexpression of TRPM4 channels has been found in families suffering from inherited cardiac arrhythmias, notably heart block. In this study, we integrate a mathematical formulation of the TRPM4 channel into a Purkinje cell model (Pan-Rudy model). Instead of simply adding the channel to the model, a combination of existing currents equivalent to the TRPM4 current was constructed, based on TRPM4 current dynamics. The equivalent current was then replaced by the TRPM4 current to preserve the model action potential. Single-cell behavior showed early afterdepolarizations for increases in TRPM4 channel expression above twofold. In a homogeneous strand of tissue, propagation conducted faithfully for lower expression levels but failed completely for more than a doubling of TRPM4 channel expression. Only with a heterogeneous distribution of channel expression was intermittent heart block seen. This study suggests that in Purkinje fibers, TRPM4 channels may account for sodium background current (INab), and that a heterogeneous expression of TRPM4 channels in the His/Purkinje system is required for type II heart block, as seen clinically.


Assuntos
Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Canais de Cátion TRPM/metabolismo , Potenciais de Ação , Animais , Cães , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ramos Subendocárdicos/metabolismo , Sódio/metabolismo , Regulação para Cima
17.
J Mol Cell Cardiol ; 128: 117-128, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30677394

RESUMO

Cardiac conduction disturbances are linked with arrhythmia development. The concept of safety factor (SF) has been derived to describe the robustness of conduction, but the usefulness of this metric has been constrained by several limitations. For example, due to the difficulty of measuring the necessary input variables, SF calculations have only been applied to synthetic data. Moreover, quantitative validation of SF is lacking; specifically, the practical meaning of particular SF values is unclear, aside from the fact that propagation failure (i.e., conduction block) is characterized by SF < 1. This study aims to resolve these limitations for our previously published SF formulation and explore its relationship to relevant electrophysiological properties of cardiac tissue. First, HL-1 cardiomyocyte monolayers were grown on multi-electrode arrays and the robustness of propagation was estimated using extracellular potential recordings. SF values reconstructed purely from experimental data were largely between 1 and 5 (up to 89.1% of sites characterized). This range is consistent with values derived from synthetic data, proving that the formulation is sound and its applicability is not limited to analysis of computational models. Second, for simulations conducted in 1-, 2-, and 3-dimensional tissue blocks, we calculated true SF values at locations surrounding the site of current injection for sub- and supra-threshold stimuli and found that they differed from values estimated by our SF formulation by <10%. Finally, we examined SF dynamics under conditions relevant to arrhythmia development in order to provide physiological insight. Our analysis shows that reduced conduction velocity (Θ) caused by impaired intrinsic cell-scale excitability (e.g., due to sodium current a loss-of-function mutation) is associated with less robust conduction (i.e., lower SF); however, intriguingly, Θ variability resulting from modulation of tissue scale conductivity has no effect on SF. These findings are supported by analytic derivation of the relevant relationships from first principles. We conclude that our SF formulation, which can be applied to both experimental and synthetic data, produces values that vary linearly with the excess charge needed for propagation. SF calculations can provide insights helpful in understanding the initiation and perpetuation of cardiac arrhythmia.


Assuntos
Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/epidemiologia , Bloqueio Cardíaco/fisiopatologia , Frequência Cardíaca/fisiologia , Humanos , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Condutividade Térmica
18.
Am J Physiol Heart Circ Physiol ; 316(1): H134-H144, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339499

RESUMO

There is no known strategy to differentiate which multicomponent electrograms in sinus rhythm maintain reentrant ventricular tachycardia (VT). Low entropy in the voltage breakdown of a multicomponent electrogram can localize conditions suitable for reentry but has not been validated against the classic VT activation mapping. We examined whether low entropy in a late and diversely activated ventricular scar region characterizes and differentiates the diastolic path of VT and represents protected tissue channels devoid of side branches. Intraoperative bipolar electrogram (BiEGM) activation and entropy maps were obtained during sinus rhythm in 17 patients with ischemic cardiomyopathy and compared with diastolic activation paths of VT (total of 39 VTs). Mathematical modeling of a zigzag main channel with side branches was also used to further validate structural representation of low entropy in the ventricular scar. A median of one region per patient (range: 1-2 regions) was identified in sinus rhythm, in which BiEGM with the latest mean activation time and adjacent minimum entropy were assembled together in a high-activation dispersion region. These regions accurately recognized diastolic paths of 34 VTs, often to multiple inducible VTs within a single individual arrhythmogenic region. In mathematical modeling, side branching from the main channel had a strong influence on the BiEGM composition along the main channel. The BiEGM obtained from a long unbranched channel had the lowest entropy compared with those with multiple side branches. In conclusion, among a population of multicomponent sinus electrograms, those that demonstrate low entropy and are delayed colocalize to critical long-protected channels of VT. This information is pertinent for planning VT ablation in sinus rhythm. NEW & NOTEWORTHY Entropy is a measure to quantify breakdown in information. Electrograms from a protected tissue channel can only possess a few states in their voltage and thus less information. In contrast, current-load interactions from side branches in unprotected channels introduce a number of dissimilar voltage deflections and thus high information. We compare here a mapping approach based on entropy against a rigorous reference standard of activation mapping during VT and entropy was assessed in sinus rhythm.


Assuntos
Frequência Cardíaca , Teoria da Informação , Modelos Cardiovasculares , Contração Miocárdica , Taquicardia Ventricular/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Entropia , Humanos , Taquicardia Ventricular/terapia
20.
PLoS Comput Biol ; 14(5): e1006166, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795549

RESUMO

Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success.


Assuntos
Fibrilação Atrial/fisiopatologia , Simulação por Computador , Fibrose/fisiopatologia , Modelos Cardiovasculares , Veias Pulmonares/fisiopatologia , Potenciais de Ação/fisiologia , Eletrofisiologia Cardíaca , Ablação por Cateter , Átrios do Coração/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA