Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(30): 39796-39806, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38984539

RESUMO

In recent years, hydrogen has gained attention as a potential solution to replace fossil fuels, thus reducing greenhouse gas emissions. The development of ever improving hydrogen sensors is a topic that is constantly under study due to concerns about the inherent risk of leaks of this gas and potential explosions. In this work, a new, long-term, stable phosphorene-based sensor was developed for hydrogen detection. A simple functionalization of phosphorene using urea was employed to synthesize an air-stable material, subsequently used to prepare films for gas sensing applications, via the drop casting method. The material was deeply characterized by different techniques (scanning electron microscopy, X-ray diffraction, X-ray photoelectron, and Raman spectroscopy), and the stability of the material in a noninert atmosphere was evaluated. The phosphorene-based sensor exhibited high sensitivity (up to 700 ppm) and selectivity toward hydrogen at room temperature, as well as long-term stability over five months under ambient conditions. To gain further insight into the gas sensing mechanism over the surface, we employed a dedicated apparatus, namely operando diffuse reflectance infrared Fourier transform, by exposing the chemoresistive sensor to hydrogen gas under dry air conditions.

2.
Nanomaterials (Basel) ; 13(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764577

RESUMO

Chemoresistive nanostructured gas sensors are employed in many diverse applications in the medical, industrial, environmental, etc. fields; therefore, it is crucial to have a device that is able to quickly calibrate and characterize them. To this aim, a portable, user-friendly device designed to easily calibrate a sensor in laboratory and/or on field is introduced here. The device comprises a small hermetically sealed chamber (containing the sensor socket and a temperature/humidity sensor), a pneumatic system, and a custom electronics controlled by a Raspberry Pi 4 developing board, running a custom software (Version 1.0) whose user interface is accessed via a multitouch-screen. This device automatically characterizes the sensor heater in order to precisely set the desired working temperature, it acquires and plots the sensor current-to-voltage and Arrhenius relationships on the touch screen, and it can record the sensor responses to different gases and environments. These tests were performed in dry air on two representative sensors based on widely used SnO2 material. The device demonstrated the independence of the Arrhenius plot from the film applied voltage and the linearity of the I-Vs, which resulted from the voltage step length (1-30 min) and temperature (200-550 °C).

3.
Biosens Bioelectron ; 20(10): 1968-76, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15741065

RESUMO

The accurate determination of biological parameters by means of rapid, on-line measurements at low-concentrations is an important task within the fields of pharmaceutical screening and medical diagnostic. Nevertheless, in biological samples, the analytes of interest are present as minor components in complex mixtures and with interfering species. Biosensors are the best candidates for these applications providing a direct solution to this need of accuracy, but their intrinsic selectivity often excludes all the other components in the sample. A separation step introduced prior to the sensing component could allow both the increase of selectivity with respect the interfering species and the identification of a large spectrum of molecular components in the sample. This work reports the development of a silicon-based integrated separation microsystem for gas chromatography aimed to biomedical applications, with particular emphasis to monitor the homovanillic acid (HVA) and vanillylmandelic acid (VMA) ratios in mass population screening for neuroblastoma diagnosis and prognosis. The miniaturised system consists of two main modules: (i) a metal oxide semiconductor detector and (ii) a micromachined separation capillary column. As first step, the metal oxide semiconductor capability to detect HVA and VMA has been demonstrated. Then, a technology for a silicon separation capillary microcolumn including the on-chip gas sensor housing has been proposed and a first prototype has been developed. The proposed microsystem is an analytical device with biosensing capabilities for diagnostic and biomedical applications, which yield an electronic signal proportional to the concentration of a specific analyte or group of analytes.


Assuntos
Biomarcadores Tumorais/análise , Cromatografia Gasosa/instrumentação , Eletroquímica/instrumentação , Ácido Homovanílico/análise , Neuroblastoma/diagnóstico , Silício , Transdutores , Ácido Vanilmandélico/análise , Cromatografia Gasosa/métodos , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Miniaturização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA