Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833709

RESUMO

Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a 'Landmarks Table' of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Humanos , Metamorfose Biológica , Reprodutibilidade dos Testes , Xenopus laevis/genética
3.
Nucleic Acids Res ; 50(D1): D970-D979, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791383

RESUMO

Echinobase (www.echinobase.org) is a third generation web resource supporting genomic research on echinoderms. The new version was built by cloning the mature Xenopus model organism knowledgebase, Xenbase, refactoring data ingestion pipelines and modifying the user interface to adapt to multispecies echinoderm content. This approach leveraged over 15 years of previous database and web application development to generate a new fully featured informatics resource in a single year. In addition to the software stack, Echinobase uses the private cloud and physical hosts that support Xenbase. Echinobase currently supports six echinoderm species, focused on those used for genomics, developmental biology and gene regulatory network analyses. Over 38 000 gene pages, 18 000 publications, new improved genome assemblies, JBrowse genome browser and BLAST + services are available and supported by the development of a new echinoderm anatomical ontology, uniformly applied formal gene nomenclature, and consistent orthology predictions. A novel feature of Echinobase is integrating support for multiple, disparate species. New genomes from the diverse echinoderm phylum will be added and supported as data becomes available. The common code development design of the integrated knowledgebases ensures parallel improvements as each resource evolves. This approach is widely applicable for developing new model organism informatics resources.


Assuntos
Bases de Dados Genéticas , Equinodermos/genética , Redes Reguladoras de Genes , Genoma , Interface Usuário-Computador , Animais , Equinodermos/classificação , Genômica , Internet , Bases de Conhecimento , Anotação de Sequência Molecular , Filogenia , Xenopus/genética
4.
Kidney Int ; 103(1): 23-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603975

RESUMO

Pronephric kidneys have a single large nephron that provides essential osmoregulation in amphibians and fish until the adult kidney forms. As mammalian kidneys evolved from the simple pronephric kidneys of the early vertebrates, understanding the structure and function of pronephroi gives insight into the blueprints underlying all nephrons. The article in this issue by Corkins et al. uses single-cell sequencing to demonstrate an extraordinary segmental complexity and the organizational roadmap that mammalian nephrons are based upon.


Assuntos
Néfrons , Pronefro , Animais , Rim , Mamíferos
5.
BMC Bioinformatics ; 23(1): 99, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317743

RESUMO

BACKGROUND: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS: The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.


Assuntos
Ontologias Biológicas , Animais , Ontologia Genética , Humanos , Fenótipo , Xenopus laevis
6.
Nucleic Acids Res ; 48(D1): D776-D782, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31733057

RESUMO

Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes. Through expert curation and automated data provisioning from various sources Xenbase strives to integrate the body of knowledge on Xenopus genomics and biology together with the visualization of biologically significant interactions. Most current studies utilize next generation sequencing (NGS) but until now the results of different experiments were difficult to compare and not integrated with other Xenbase content. Xenbase has developed a suite of tools, interfaces and data processing pipelines that transforms NCBI Gene Expression Omnibus (GEO) NGS content into deeply integrated gene expression and chromatin data, mapping all aligned reads to the most recent genome builds. This content can be queried and visualized via multiple tools and also provides the basis for future automated 'gene expression as a phenotype' and gene regulatory network analyses.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Genômica , Software , Xenopus/genética , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq , Interface Usuário-Computador
7.
Nucleic Acids Res ; 46(D1): D861-D868, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059324

RESUMO

Xenbase (www.xenbase.org) is an online resource for researchers utilizing Xenopus laevis and Xenopus tropicalis, and for biomedical scientists seeking access to data generated with these model systems. Content is aggregated from a variety of external resources and also generated by in-house curation of scientific literature and bioinformatic analyses. Over the past two years many new types of content have been added along with new tools and functionalities to reflect the impact of high-throughput sequencing. These include new genomes for both supported species (each with chromosome scale assemblies), new genome annotations, genome segmentation, dynamic and interactive visualization for RNA-Seq data, updated ChIP-Seq mapping, GO terms, protein interaction data, ORFeome support, and improved connectivity to other biomedical and bioinformatic resources.


Assuntos
Bases de Dados Genéticas , Epigenômica , Genoma , Transcriptoma , Xenopus/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Imunoprecipitação da Cromatina , Biologia Computacional/organização & administração , Bases de Dados de Ácidos Nucleicos , Ontologia Genética , Genômica , MicroRNAs/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , RNA/genética , Software , Interface Usuário-Computador , Navegador , Xenopus laevis/genética
8.
Mol Ecol ; 28(16): 3629-3641, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31294494

RESUMO

Rhythms of various periodicities drive cyclical processes in organisms ranging from single cells to the largest mammals on earth, and on scales from cellular physiology to global migrations. The molecular mechanisms that generate circadian behaviours in model organisms have been well studied, but longer phase cycles and interactions between cycles with different periodicities remain poorly understood. Broadcast spawning corals are one of the best examples of an organism integrating inputs from multiple environmental parameters, including seasonal temperature, the lunar phase and hour of the day, to calibrate their annual reproductive event. We present a deep RNA-sequencing experiment utilizing multiple analyses to differentiate transcriptomic responses modulated by the interactions between the three aforementioned environmental parameters. Acropora millepora was sampled over multiple 24-hr periods throughout a full lunar month and at two seasonal temperatures. Temperature, lunar and diurnal cycles produce distinct transcriptomic responses, with interactions between all three variables identifying a core set of genes. These core genes include mef2, a developmental master regulator, and two heterogeneous nuclear ribonucleoproteins, one of which is known to post-transcriptionally interact with mef2 and with biological clock-regulating mRNAs. Interactions between diurnal and temperature differences impacted a range of core processes ranging from biological clocks to stress responses. Genes involved with developmental processes and transcriptional regulation were impacted by the lunar phase and seasonal temperature differences. Lastly, there was a diurnal and lunar phase interaction in which genes involved with RNA-processing and translational regulation were differentially regulated. These data illustrate the extraordinary levels of transcriptional variation across time in a simple radial cnidarian in response to the environment under normal conditions.


Assuntos
Antozoários/genética , Ritmo Circadiano , Lua , Estações do Ano , Temperatura , Animais , Antozoários/fisiologia , Austrália , Relógios Biológicos/genética , Regulação da Expressão Gênica , Reprodução , Transcriptoma
9.
Dev Biol ; 426(2): 194-199, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27039265

RESUMO

The two species of Xenopus most commonly used in biomedical research are the diploid Xenopus (Silurana) tropicalis and the tetraploid Xenopus laevis. The X. tropicalis genome sequence has been available since 2010 and this year the X. laevis, genome from two distinct genetic backgrounds has been published. Multiple genome assemblies available for both species and transcriptomic and epigenetic data sets are growing rapidly, all of which are available from a variety of web resources. This review describes the contents of these resources, how to locate and download genomic data, and also how to view and manipulate these data on various public genome browsers, with an emphasis on Xenbase, the Xenopus model organism database.


Assuntos
Bases de Dados Genéticas , Genoma , Genômica/métodos , Navegador , Xenopus/genética , Animais , Expressão Gênica , Microcomputadores , Terminologia como Assunto , Xenopus laevis/genética
10.
Mol Ecol ; 26(9): 2514-2526, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28141890

RESUMO

On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans. In this report, we use transcriptome sequencing at noon and midnight across an entire lunar cycle to explore how acroporid corals interpret lunar signals. The data were interrogated by both time-of-day-dependent and time-of-day-independent methods to identify different types of lunar cycles. Time-of-day methods found that genes associated with biological clocks and circadian processes change their diurnal cycles over the course of a synodic lunar cycle. Some genes have large differences between day and night at some lunar phases, but little or no diurnal differences at other phases. Many clock genes display an oscillation pattern indicative of phase shifts linked to the lunar cycle. Time-independent methods found that signal transduction, protein secretion and modification, cell cycle and ion transport change over the lunar timescale and peak at various phases of the moon. Together these data provide unique insights into how the moon impinges on coral transcription cycles and how lunar light may regulate circalunar timing systems and coral biology.


Assuntos
Antozoários/fisiologia , Relógios Biológicos/genética , Lua , Transcriptoma , Animais , Proteínas CLOCK/genética , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA