Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cancer ; 22(1): 136, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582744

RESUMO

BACKGROUND: New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS: The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS: 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS: This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Regulação para Cima , Camundongos Endogâmicos C57BL , Vírus da Coriomeningite Linfocítica/genética , Melanoma/tratamento farmacológico
3.
Front Chem ; 11: 1219883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448856

RESUMO

Despite the early clinical promise, adverse events such as acquired resistance and dose-limiting toxicities have barred the widespread use of HSP90 inhibitors as anticancer drugs. A new approach involving proteolysis-targeting chimeras (PROTACs) to degrade the protein instead of inhibiting it may overcome these problems. In this work, we describe the design, synthesis, and evaluation of cereblon-recruiting geldanamycin-based HSP90 degraders based on the PROTAC technology. Our best degrader, 3a, effectively decreased HSP90α and HSP90ß levels in cells utilizing the ubiquitin-proteasome pathway.

4.
Biochem Pharmacol ; 217: 115809, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717691

RESUMO

Although a great cure rate has been achieved for pediatric BCP-ALL, approximately 15% of patients do not respond to conventional chemotherapy and experience disease relapse. A major effort to improve the cure rates by treatment intensification would result in an undesirable increase in treatment-related toxicity and mortality, raising the need to identify novel therapeutic approaches. High-throughput (HTP) drug screening enables the profiling of patients' responses in vitro and allows the repurposing of compounds currently used for other diseases, which can be immediately available for clinical application. The aim of this study was to apply HTP drug screening to identify potentially effective compounds for the treatment of pediatric BCP-ALL patients with poor prognosis, such as patients with Down Syndrome (DS) or carrying rearrangements involving PAX5 or KMT2A/MLL genes. Patient-derived Xenografts (PDX) samples from 34 BCP-ALL patients (9 DS CRLF2r, 15 PAX5r, 10 MLLr), 7 human BCP-ALL cell lines and 14 hematopoietic healthy donor samples were screened on a semi-automated HTP drug screening platform using a 174 compound library (FDA/EMA-approved or in preclinical studies). We identified 9 compounds active against BCP-ALL (ABT-199/venetoclax, AUY922/luminespib, dexamethasone, EC144, JQ1, NVP-HSP990, paclitaxel, PF-04929113 and vincristine), but sparing normal cells. Ex vivo validations confirmed that the BCL2 inhibitor venetoclax exerts an anti-leukemic effect against all three ALL subgroups at nanomolar concentrations. Overall, this study points out the benefit of HTP screening application for drug repurposing to allow the identification of effective and clinically translatable therapeutic agents for difficult-to-treat childhood BCP-ALL subgroups.


Assuntos
Reposicionamento de Medicamentos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Criança , Ensaios de Triagem em Larga Escala , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico
5.
Cell Death Dis ; 14(12): 799, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057328

RESUMO

HSP90 has emerged as an appealing anti-cancer target. However, HSP90 inhibitors (HSP90i) are characterized by limited clinical utility, primarily due to the resistance acquisition via heat shock response (HSR) induction. Understanding the roles of abundantly expressed cytosolic HSP90 isoforms (α and ß) in sustaining malignant cells' growth and the mechanisms of resistance to HSP90i is crucial for exploiting their clinical potential. Utilizing multi-omics approaches, we identified that ablation of the HSP90ß isoform induces the overexpression of HSP90α and extracellular-secreted HSP90α (eHSP90α). Notably, we found that the absence of HSP90α causes downregulation of PTPRC (or CD45) expression and restricts in vivo growth of BCR-ABL1+ leukemia cells. Subsequently, chronic long-term exposure to the clinically advanced HSP90i PU-H71 (Zelavespib) led to copy number gain and mutation (p.S164F) of the HSP90AA1 gene, and HSP90α overexpression. In contrast, acquired resistance toward other tested HSP90i (Tanespimycin and Coumermycin A1) was attained by MDR1 efflux pump overexpression. Remarkably, combined CDK7 and HSP90 inhibition display synergistic activity against therapy-resistant BCR-ABL1+ patient leukemia cells via blocking pro-survival HSR and HSP90α overexpression, providing a novel strategy to avoid the emergence of resistance against treatment with HSP90i alone.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Leucemia , Neoplasias , Humanos , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Leucemia/tratamento farmacológico , Leucemia/genética , Mutação , Resistencia a Medicamentos Antineoplásicos
6.
J Med Chem ; 65(24): 16860-16878, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36473103

RESUMO

In this work, we utilized the proteolysis targeting chimera (PROTAC) technology to achieve the chemical knock-down of histone deacetylase 6 (HDAC6). Two series of cereblon-recruiting PROTACs were synthesized via a solid-phase parallel synthesis approach, which allowed the rapid preparation of two HDAC6 degrader mini libraries. The PROTACs were either based on an unselective vorinostat-like HDAC ligand or derived from a selective HDAC6 inhibitor. Notably, both PROTAC series demonstrated selective degradation of HDAC6 in leukemia cell lines. The best degraders from each series (denoted A6 and B4) were capable of degrading HDAC6 via ternary complex formation and the ubiquitin-proteasome pathway, with DC50 values of 3.5 and 19.4 nM, respectively. PROTAC A6 demonstrated promising antiproliferative activity via inducing apoptosis in myeloid leukemia cell lines. These findings highlight the potential of this series of degraders as effective pharmacological tools for the targeted degradation of HDAC6.


Assuntos
Antineoplásicos , Desacetilase 6 de Histona , Antineoplásicos/farmacologia , Quimera de Direcionamento de Proteólise , Técnicas de Síntese em Fase Sólida , Proliferação de Células , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
7.
RSC Med Chem ; 13(12): 1540-1548, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545435

RESUMO

Ten-eleven translocation dioxygenases (TETs) are the erasers of 5-methylcytosine (mC), the central epigenetic regulator of mammalian DNA. TETs convert mC to three oxidized derivatives with unique physicochemical properties and inherent regulatory potential, and it initializes active demethylation by the base excision repair pathway. Potent small molecule inhibitors would be useful tools to study TET functions by conditional control. To facilitate the discovery of such tools, we here report a high-throughput screening pipeline and its application to screen and validate 31.5k compounds for inhibition of TET2. Using a homogenous fluorescence assay, we discover a novel quinoline-based scaffold that we further validate with an orthogonal semi-high throughput MALDI-MS assay for direct monitoring of substrate turnover. Structure-activity relationship (SAR) studies involving >20 derivatives of this scaffold led to the identification of optimized inhibitors, and together with computational studies suggested a plausible model for its mode of action.

8.
ACS Cent Sci ; 8(5): 636-655, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647282

RESUMO

Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.

9.
Org Lett ; 20(13): 4077-4080, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927252

RESUMO

Selective oxidative homo- and cross-coupling of electron-rich phenols and anilides was developed using nitrosonium tetrafluoroborate as a catalyst. Oxidative coupling of phenols revealed unusual selectivities, which translated into the unprecedented synthesis of inverse Pummerer-type ketones. Mechanistic studies suggest that oxidative coupling of phenols and anilides shares a common pathway via homolytical heteroatom-hydrogen bond cleavage. Nitrosonium salt catalysis was applied for cross-dehydrogenative coupling initiated by generation of heteroatom-centered radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA