Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 53(12): 3367-72, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24205855

RESUMO

Much work has been done on algorithms for structure-based drug modeling in silico, and almost all these systems have a core need for three-dimensional geometric models. The manipulation of these models, particularly their transformation from one position to another, is a substantial computational task with design questions of its own. Solid body rotation is an important part of these transformations, and we present here a careful comparison of two established techniques: Euler angles and quaternions. The relative superiority of the quaternion method when applied to molecular docking is demonstrated by practical experiment, as is the crucial importance of proper adjustment calculations in search methods.


Assuntos
Modelos Químicos , Simulação de Acoplamento Molecular , Receptores de Superfície Celular/química , Algoritmos , Desenho de Fármacos , Humanos , Ligantes , Conformação Molecular , Rotação
2.
IEEE Trans Med Imaging ; 42(7): 1944-1954, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37015445

RESUMO

Data government has played an instrumental role in securing the privacy-critical infrastructure in the medical domain and has led to an increased need of federated learning (FL). While decentralization can limit the effectiveness of standard supervised learning, the impact of decentralization on partially supervised learning remains unclear. Besides, due to data scarcity, each client may have access to only limited partially labeled data. As a remedy, this work formulates and discusses a new learning problem federated partially supervised learning (FPSL) for limited decentralized medical images with partial labels. We study the impact of decentralized partially labeled data on deep learning-based models via an exemplar of FPSL, namely, federated partially supervised learning multi-label classification. By dissecting FedAVG, a seminal FL framework, we formulate and analyze two major challenges of FPSL and propose a simple yet robust FPSL framework, FedPSL, which addresses these challenges. In particular, FedPSL contains two modules, task-dependent model aggregation and task-agnostic decoupling learning, where the first module addresses the weight assignment and the second module improves the generalization ability of the feature extractor. We provide a comprehensive empirical understanding of FSPL under data scarcity with simulated experiments. The empirical results not only indicate that FPSL is an under-explored problem with practical value but also show that the proposed FedPSL can achieve robust performance against baseline methods on data challenges such as data scarcity and domain shifts. The findings of this study also pose a new research direction towards label-efficient learning on medical images.


Assuntos
Diagnóstico por Imagem , Aprendizado de Máquina Supervisionado , Humanos
3.
PLoS One ; 17(7): e0269950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35853014

RESUMO

PURPOSE: Breast cancer is one of the most common tumours in women, nevertheless, it is also one of the cancers that is most usually treated. As a result, early detection is critical, which can be accomplished by routine mammograms. This paper aims to describe, analyze, compare and evaluate three image descriptors involved in classifying breast cancer images from four databases. APPROACH: Multi-Objective Evolutionary Algorithms (MOEAs) prove themselves as being efficient methods for selection and classification problems. This paper aims to study combinations of well-known classification objectives in order to compare the results of their application in solving very specific learning problems. The experimental results undergo empirical analysis which is supported by a statistical approach. The results are illustrated on a collection of medical image databases, but with a focus on the MOEAs' performance in terms of several well-known measures. The databases were chosen specifically to feature reliable human annotations, so as to measure the correlation between the gold standard classifications and the various MOEA classifications. RESULTS: We have seen how different statistical tests rank one algorithm over the others in our set as being better. These findings are unsurprising, revealing that there is no single gold standard for comparing diverse techniques or evolutionary algorithms. Furthermore, building meta-classifiers and evaluating them using a single, favorable metric is both extremely unwise and unsatisfactory, as the impact is to skew the results. CONCLUSIONS: The best method to address these flaws is to select the right set of objectives and criteria. Using accuracy-related objectives, for example, is directly linked to maximizing the number of true positives. If, on the other hand, accuracy is chosen as the generic metric, the primary classification goal is shifted to increasing the positively categorized data points.


Assuntos
Neoplasias da Mama , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Bases de Dados Factuais , Feminino , Humanos , Mamografia
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2956-2959, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891865

RESUMO

COVID-19, a new strain of coronavirus disease, has been one of the most serious and infectious disease in the world. Chest CT is essential in prognostication, diagnosing this disease, and assessing the complication. In this paper, a multi-class COVID-19 CT segmentation is proposed aiming at helping radiologists estimate the extent of effected lung volume. We utilized four augmented pyramid networks on an encoder-decoder segmentation framework. Quadruple Augmented Pyramid Network (QAP-Net) not only enable CNN capture features from variation size of CT images, but also act as spatial inter-connections and down-sampling to transfer sufficient feature information for semantic segmentation. Experimental results achieve competitive performance in segmentation with the Dice of 0.8163, which outperforms other state-of-the-art methods, demonstrating the proposed framework can segment of consolidation as well as glass, ground area via COVID-19 chest CT efficiently and accurately.


Assuntos
COVID-19 , Humanos , Tratos Piramidais , SARS-CoV-2 , Tórax , Tomografia Computadorizada por Raios X
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6933-6936, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892698

RESUMO

With the increasing awareness of high-quality life, there is a growing need for health monitoring devices running robust algorithms in home environment. Health monitoring technologies enable real-time analysis of users' health status, offering long-term healthcare support and reducing hospitalization time. The propose of this work is twofold, the software focuses on the analysis of gait, which is widely adopted for joint correction and assessing any lower limb, or spinal problem. On the hardware side, a novel marker-less gait analysis device using a low-cost RGB camera mounted on a mobile tele-robot is designed. As gait analysis with a single camera is much more challenging compared to previous works utilizing multi-cameras, a RGB-D camera or wearable sensors, we propose using vision-based human pose estimation approaches. More specifically, based on the out-put of state-of-the-art human pose estimation models, we devise measurements for four bespoke gait parameters: inversion/eversion, dorsiflexion/plantarflexion, ankle and foot progression angles. We thereby classify walking patterns into normal, supination, pronation and limp. We also illustrate how to run the proposed machine learning models in low-resource environments such as a single entry-level CPU. Experiments show that our single RGB camera method achieves competitive performance compared to multi-camera motion capture systems, at smaller hardware costs.


Assuntos
Análise da Marcha , Robótica , Fenômenos Biomecânicos , Atenção à Saúde , Ambiente Domiciliar , Humanos
6.
Neuropsychology ; 35(8): 847-862, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34618514

RESUMO

OBJECTIVE: Complex Figure Copy Tasks are one of the most commonly employed neuropsychological tests. However, manual scoring of this test is time-consuming, requires training, and can then still be inconsistent between different examiners. We aimed to develop and evaluate a novel, automated method for scoring a tablet-based Figure Copy Task. METHOD: A cohort of 261 healthy adults and 203 stroke survivors completed the digital Oxford Cognitive Screen-Plus (OCS-Plus) Figure Copy Task. Responses were independently scored by two trained human raters and by a novel automated scoring program. RESULTS: Overall, the Automated Scoring Program was able to reliably extract and identify the separate figure elements (average sensitivity and specificity of 92.10% and 90.20%, respectively) and assigned total scores which agreed well with manual scores (intraclass correlation coefficient [ICC] = .83). Receiver Operating Curve analysis demonstrated that, compared to overall impairment categorizations based on manual scores, the Automated Scoring Program had an overall sensitivity and specificity of 80% and 93.40%, respectively (Area Under the Curve; AUC = 86.70%). Automated total scores also reliably distinguished between different clinical impairment groups with subacute stroke survivors scoring significantly worse than longer-term survivors, which in turn scored worse than neurologically healthy adults. CONCLUSIONS: These results demonstrate that the novel Automated Scoring Program was able to reliably extract and accurately score Figure Copy Task data, even in cases where drawings were highly distorted due to comorbid fine-motor deficits. This represents a significant advancement as this novel technology can be employed to produce immediate, unbiased, and reproducible scores for Figure Copy Task responses in clinical and research environments. Key Points-Question: We aimed to develop and evaluate a novel, automated method for scoring a tablet-based Figure Copy Task. FINDINGS: The novel Automated Scoring Program was able to reliably extract and accurately score Figure Copy Task data, even in cases where drawings were highly distorted due to comorbid fine-motor deficits. IMPORTANCE: This represents a significant advancement as this novel technology can be employed to produce immediate, unbiased, and reproducible scores for Figure Copy Task responses in clinical and research environments. Next Steps: Trialing the Automated Scoring Program in clinical environments. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Envelhecimento Saudável , Acidente Vascular Cerebral , Adulto , Humanos , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sobreviventes
7.
Med Image Anal ; 70: 102002, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657508

RESUMO

The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of deep learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of interest. EndoCV2020 challenges are designed to address research questions in these remits. In this paper, we present a summary of methods developed by the top 17 teams and provide an objective comparison of state-of-the-art methods and methods designed by the participants for two sub-challenges: i) artefact detection and segmentation (EAD2020), and ii) disease detection and segmentation (EDD2020). Multi-center, multi-organ, multi-class, and multi-modal clinical endoscopy datasets were compiled for both EAD2020 and EDD2020 sub-challenges. The out-of-sample generalization ability of detection algorithms was also evaluated. Whilst most teams focused on accuracy improvements, only a few methods hold credibility for clinical usability. The best performing teams provided solutions to tackle class imbalance, and variabilities in size, origin, modality and occurrences by exploring data augmentation, data fusion, and optimal class thresholding techniques.


Assuntos
Artefatos , Aprendizado Profundo , Algoritmos , Endoscopia Gastrointestinal , Humanos
8.
J Comput Aided Mol Des ; 23(10): 715-24, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19585084

RESUMO

Virtual screening is an important resource in the drug discovery community, of which protein-ligand docking is a significant part. Much software has been developed for this purpose, largely by biochemists and those in related disciplines, who pursue ever more accurate representations of molecular interactions. The resulting tools, however, are very processor-intensive. This paper describes some initial results from a project to review computational chemistry techniques for docking from a non-chemistry standpoint. An abstract blueprint for protein-ligand docking using empirical scoring functions is suggested, and this is used to discuss potential improvements. By introducing computer science tactics such as lazy function evaluation, dramatic increases to throughput can and have been realized using a real-world docking program. Naturally, they can be extended to any system that approximately corresponds to the architecture outlined.


Assuntos
Desenho de Fármacos , Ligantes , Relação Estrutura-Atividade
9.
J Med Imaging (Bellingham) ; 5(1): 015006, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29487883

RESUMO

All medical image segmentation algorithms need to be validated and compared, yet no evaluation framework is widely accepted within the imaging community. None of the evaluation metrics that are popular in the literature are consistent in the way they rank segmentation results: they tend to be sensitive to one or another type of segmentation error (size, location, and shape) but no single metric covers all error types. We introduce a family of metrics, with hybrid characteristics. These metrics quantify the similarity or difference of segmented regions by considering their average overlap in fixed-size neighborhoods of points on the boundaries of those regions. Our metrics are more sensitive to combinations of segmentation error types than other metrics in the existing literature. We compare the metric performance on collections of segmentation results sourced from carefully compiled two-dimensional synthetic data and three-dimensional medical images. We show that our metrics: (1) penalize errors successfully, especially those around region boundaries; (2) give a low similarity score when existing metrics disagree, thus avoiding overly inflated scores; and (3) score segmentation results over a wider range of values. We analyze a representative metric from this family and the effect of its free parameter on error sensitivity and running time.

10.
J Orthop Res ; 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469172

RESUMO

Manual segmentation is a significant obstacle in the analysis of compositional MRI for clinical decision-making and research. Our aim was to produce a fast, accurate, reproducible, and clinically viable semi-automated method for segmentation of hip MRI. We produced a semi-automated segmentation method for cartilage segmentation of hip MRI sequences consisting of a two step process: (i) fully automated hierarchical partitioning of the data volume generated using a bespoke segmentation approach applied recursively, followed by (ii) user selection of the regions of interest using a region editor. This was applied to dGEMRIC scans at 3T taken from a prospective longitudinal study of individuals considered at high-risk of developing osteoarthritis (SibKids) which were also manually segmented for comparison. Fourteen hips were segmented both manually and using our semi-automated method. Per hip, processing time for semi-automated and manual segmentation was 10-15, and 60-120 min, respectively. Accuracy and Dice similarity coefficient (DSC) for the comparison of semi-automated and manual segmentations was 0.9886 and 0.8803, respectively. Intra-observer and inter-observer reproducibility of the semi-automated segmentation method gave an accuracy of 0.9997 and 0.9991, and DSC of 0.9726 and 0.9354, respectively. We have proposed a fast, accurate, reproducible, and clinically viable semi-automated method for segmentation of hip MRI sequences. This enables accurate anatomical and biochemical measurements to be obtained quickly and reproducibly. This is the first such method that shows clinical applicability, and could have large ramifications for the use of compositional MRI in research and clinically. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA