Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(23)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33168584

RESUMO

DNA endoreplication has been implicated as a cell strategy for cell growth and in tissue injury. Here, we demonstrate that barrier-to-autointegration factor (BAF) represses endoreplication in Drosophila myofibers. We show that BAF localization at the nuclear envelope is eliminated in flies with mutations of the linker of nucleoskeleton and cytoskeleton (LINC) complex in which the LEM-domain protein Otefin is excluded, or after disruption of the nucleus-sarcomere connections. Furthermore, BAF localization at the nuclear envelope requires the activity of the BAF kinase VRK1/Ball, and, consistently, non-phosphorylatable BAF-GFP is excluded from the nuclear envelope. Importantly, removal of BAF from the nuclear envelope correlates with increased DNA content in the myonuclei. E2F1, a key regulator of endoreplication, overlaps BAF localization at the myonuclear envelope, and BAF removal from the nuclear envelope results in increased E2F1 levels in the nucleoplasm and subsequent elevated DNA content. We suggest that LINC-dependent and phosphosensitive attachment of BAF to the nuclear envelope, through its binding to Otefin, tethers E2F1 to the nuclear envelope thus inhibiting its accumulation in the nucleoplasm.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Endorreduplicação/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Citoesqueleto/genética , Replicação do DNA/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Miofibrilas/genética , Membrana Nuclear/genética , Matriz Nuclear/genética , Protamina Quinase/genética
2.
Development ; 145(17)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30093550

RESUMO

The cytoplasm of striated myofibers contains a large number of membrane organelles, including sarcoplasmic reticulum (SR), T-tubules and the nuclear membrane. These organelles maintain a characteristic juxtaposition that appears to be essential for efficient inter-membranous exchange of RNA, proteins and ions. We found that the membrane-associated Muscle-specific α2/δ (Ma2/d) subunit of the Ca2+ channel complex localizes to the SR and T-tubules, and accumulates at the myonuclear surfaces. Furthermore, Ma2/d mutant larval muscles exhibit nuclear positioning defects, disruption of the nuclear-SR juxtapositioning, as well as impaired larval locomotion. Ma2/d localization at the nuclear membrane depends on the proper function of the nesprin ortholog Msp300 and the BAR domain protein Amphiphysin (Amph). Importantly, live imaging of muscle contraction in intact Drosophila larvae indicated altered distribution of Sarco/Endoplamic Reticulum Ca2+-ATPase (SERCA) around the myonuclei of Ma2/d mutant larvae. Co-immunoprecipitation analysis supports association between Ma2/d and Amph, and indirectly with Msp300. We therefore suggest that Ma2/d, in association with Msp300 and Amph, mediates interactions between the SR and the nuclear membrane.


Assuntos
Transporte Biológico/fisiologia , Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Drosophila , Contração Muscular/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Development ; 142(20): 3512-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26400093

RESUMO

Coordinated locomotion of an organism relies on the development of proper musculoskeletal connections. In Drosophila, the Slit-Robo signaling pathway guides muscles to tendons. Here, we show that the Slit receptor Roundabout 2 (Robo2) plays a non-cell-autonomous role in directing muscles to their corresponding tendons. Robo2 is expressed by tendons, and its non-signaling activity in these cells promotes Slit cleavage, producing a cleaved Slit N-terminal guidance signal that provides short-range signaling into muscles. Consistently, robo2 mutant embryos exhibited a muscle phenotype similar to that of slit, which could not be rescued by muscle-specific Robo2 expression but rather by ectodermally derived Robo2. Alternatively, this muscle phenotype could be induced by tendon-specific robo2 RNAi. We further show that membrane immobilization of Slit or its N-terminal cleaved form (Slit-N) on tendons bypasses the functional requirement for Robo2 in tendons, verifying that the major role of Robo2 is to promote the association of Slit with the tendon cell membrane. Slit-N tends to oligomerize whereas full-length uncleavable Slit does not. It is therefore proposed that Slit-N oligomers, produced at the tendon membrane by Robo2, signal to the approaching muscle by combined Robo1 and Robo3 activity. These findings establish a Robo2-mediated mechanism, independent of signaling, that is essential to limiting Slit distribution and which might be relevant to the regulation of Slit-mediated short-range signaling in additional systems.


Assuntos
Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Músculos/embriologia , Mutação , Proteínas do Tecido Nervoso/fisiologia , Receptores Imunológicos/fisiologia , Tendões/embriologia , Animais , Padronização Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Técnicas de Introdução de Genes , Heterozigoto , Homozigoto , Proteínas do Tecido Nervoso/genética , Fenótipo , Estrutura Terciária de Proteína , Interferência de RNA , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Roundabout
4.
Development ; 142(8): 1431-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813540

RESUMO

During organogenesis, secreted signaling proteins direct cell migration towards their target tissue. In Drosophila embryos, developing muscles are guided by signals produced by tendons to promote the proper attachment of muscles to tendons, essential for proper locomotion. Previously, the repulsive protein Slit, secreted by tendon cells, has been proposed to be an attractant for muscle migration. However, our findings demonstrate that through tight control of its distribution, Slit repulsion is used for both directing and arresting muscle migration. We show that Slit cleavage restricts its distribution to tendon cells, allowing it to function as a short-range repellent that directs muscle migration and patterning, and promotes their halt upon reaching the target site. Mechanistically, we show that Slit processing produces a rapidly degraded C-terminal fragment and an active, stable N-terminal polypeptide that is tethered to the tendon cell membrane, which further protects it from degradation. Consistently, the requirement for Slit processing can be bypassed by providing an uncleavable, membrane-bound form of Slit that is stable and is retained on expressing tendon cells. Moreover, muscle elongation appears to be extremely sensitive to Slit levels, as replacing the entire full-length Slit with the stable Slit-N-polypeptide results in excessive repulsion, which leads to a defective muscle pattern. These findings reveal a novel cleavage-dependent regulatory mechanism controlling Slit spatial distribution, which may operate in other Slit-dependent processes.


Assuntos
Proteínas de Drosophila/metabolismo , Músculos/citologia , Músculos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Western Blotting , Movimento Celular/genética , Movimento Celular/fisiologia , Drosophila , Proteínas de Drosophila/genética , Imunoprecipitação , Modelos Teóricos , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Tendões/citologia , Tendões/metabolismo
5.
Nucleic Acids Res ; 42(3): 1970-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217913

RESUMO

Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/genética , Proteínas Nucleares/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/metabolismo , Feminino , Proteínas da Matriz do Complexo de Golgi , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Folículo Ovariano/metabolismo , Sequências Reguladoras de Ácido Ribonucleico
6.
PLoS Genet ; 9(6): e1003597, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23825967

RESUMO

The Drosophila heart tube represents a structure that similarly to vertebrates' primary heart tube exhibits a large lumen; the mechanisms promoting heart tube morphology in both Drosophila and vertebrates are poorly understood. We identified Multiplexin (Mp), the Drosophila orthologue of mammalian Collagen-XV/XVIII, and the only structural heart-specific protein described so far in Drosophila, as necessary and sufficient for shaping the heart tube lumen, but not that of the aorta. Mp is expressed specifically at the stage of heart tube closure, in a polarized fashion, uniquely along the cardioblasts luminal membrane, and its absence results in an extremely small heart tube lumen. Importantly, Mp forms a protein complex with Slit, and interacts genetically with both slit and robo in the formation of the heart tube. Overexpression of Mp in cardioblasts promotes a large heart lumen in a Slit-dependent manner. Moreover, Mp alters Slit distribution, and promotes the formation of multiple Slit endocytic vesicles, similarly to the effect of overexpression of Robo in these cells. Our data are consistent with Mp-dependent enhancement of Slit/Robo activity and signaling, presumably by affecting Slit protein stabilization, specifically at the lumen side of the heart tube. This activity results with a Slit-dependent, local reduction of F-actin levels at the heart luminal membrane, necessary for forming the large heart tube lumen. Consequently, lack of Mp results in decreased diastolic capacity, leading to reduced heart contractility, as measured in live fly hearts. In summary, these findings show that the polarized localization of Mp controls the direction, timing, and presumably the extent of Slit/Robo activity and signaling at the luminal membrane of the heart cardioblasts. This regulation is essential for the morphogenetic changes that sculpt the heart tube in Drosophila, and possibly in forming the vertebrates primary heart tube.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/genética , Colágeno/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Morfogênese/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Colágeno/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Coração/anatomia & histologia , Coração/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas Roundabout
7.
PLoS Genet ; 8(3): e1002632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479211

RESUMO

Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Coração , Proteínas Musculares , Músculos , Proteínas Nucleares , Proteínas de Ligação a RNA , Animais , Conectina , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/embriologia , Músculos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Multimerização Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Nat Genet ; 37(1): 101-5, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15592470

RESUMO

Crosstalk between signaling pathways is crucial for the generation of complex and varied transcriptional networks. Antagonism between the EGF-receptor (EGFR) and Notch pathways in particular is well documented, although the underlying mechanism is poorly understood. The global corepressor Groucho (Gro) and its transducin-like Enhancer-of-split (TLE) mammalian homologs mediate repression by a myriad of repressors, including effectors of the Notch, Wnt (Wg) and TGF-beta (Dpp) signaling cascades. Given that there are genetic interactions between gro and components of the EGFR pathway (ref. 9 and P.H. et al., unpublished results), we tested whether Gro is at a crossroad between this and other pathways. Here we show that phosphorylation of Gro in response to MAPK activation weakens its repressor capacity, attenuating Gro-dependent transcriptional silencing by the Enhancer-of-split proteins, effectors of the Notch cascade. Thus, Gro is a new junction between signaling pathways, enabling EGFR signaling to antagonize transcriptional output by Notch and potentially other Gro-dependent pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Imuno-Histoquímica , Receptores Notch , Transdução de Sinais/fisiologia , Asas de Animais/anormalidades , Asas de Animais/crescimento & desenvolvimento , Proteínas ras/metabolismo
9.
Development ; 137(5): 785-94, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20110313

RESUMO

The correct assembly of the myotendinous junction (MTJ) is crucial for proper muscle function. In Drosophila, this junction comprises hemi-adherens junctions that are formed upon arrival of muscles at their corresponding tendon cells. The MTJ mainly comprises muscle-specific alphaPS2betaPS integrin receptors and their tendon-derived extracellular matrix ligand Thrombospondin (Tsp). We report the identification and functional analysis of a novel tendon-derived secreted protein named Slowdown (Slow). Homozygous slow mutant larvae exhibit muscle or tendon rupture, sluggish larval movement, partial lethality, and the surviving adult flies are unable to fly. These defects result from improper assembly of the embryonic MTJ. In slow mutants, Tsp prematurely accumulates at muscle ends, the morphology of the muscle leading edge changes and the MTJ architecture is aberrant. Slow was found to form a protein complex with Tsp. This complex is biologically active and capable of altering the morphology and directionality of muscle ends. Our analysis implicates Slow as an essential component of the MTJ, crucial for ensuring muscle and tendon integrity during larval locomotion.


Assuntos
Proteínas de Drosophila/fisiologia , Integrinas/fisiologia , Músculos/embriologia , Tendões/embriologia , Tendões/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Células Cultivadas , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Integrinas/metabolismo , Junções Intercelulares/genética , Junções Intercelulares/fisiologia , Camundongos , Camundongos Transgênicos , Morfogênese/genética , Morfogênese/fisiologia , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculos/fisiologia
10.
Development ; 137(17): 2807-17, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20699295

RESUMO

The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.


Assuntos
Desenvolvimento Musculoesquelético , Tendões/embriologia , Animais , Drosophila/embriologia , Drosophila/genética , Drosophila/fisiologia , Músculos/embriologia , Músculos/fisiologia , Desenvolvimento Musculoesquelético/genética , Desenvolvimento Musculoesquelético/fisiologia , Transdução de Sinais , Tendões/fisiologia , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/fisiologia
11.
Methods ; 56(1): 63-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21963658

RESUMO

The Drosophila heart has become an exciting model for elucidating the molecular basis for cardiac function in higher organisms. To complement the genetic approaches that have recently identified an array of genes essential for cardiac function, we developed a method to obtain optimal semi-thin cross sections of embryonic, larval, and adult fly hearts in a desired orientation. A procedure for fluorescent labeling of these sections with multiple markers has also been developed, allowing the detection of proteins at high subcellular resolution. Sections obtained by our method reveal changes in cell shape between embryonic heart and aorta cardioblasts and elucidate the morphology of the adult heart. Analysis of the adult heart reveals the precise cardiac tube morphology, differential distribution of the extracellular matrix protein Laminin within the cardiac tube, as well as individual hand-positive, and Held Out Wings (HOW)-positive luminal cells that might represent blood cells. In summary, our method enables visualization of cross sections of the embryonic and adult hearts at high resolution while maintaining the ability to co-label the sections with multiple markers, thereby facilitating the analysis of cardiac tube formation and maintenance at different developmental stages.


Assuntos
Drosophila/citologia , Técnicas de Preparação Histocitológica/métodos , Animais , Anticorpos/química , Drosophila/embriologia , Técnicas de Preparação Histocitológica/tendências , Imuno-Histoquímica , Miocárdio/citologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Coloração e Rotulagem
12.
Elife ; 122023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436818

RESUMO

We show evidence of the association of RNA polymerase II (RNAP) with chromatin in a core-shell organization, reminiscent of microphase separation where the cores comprise dense chromatin and the shell, RNAP and chromatin with low density. These observations motivate our physical model for the regulation of core-shell chromatin organization. Here, we model chromatin as a multiblock copolymer, comprising active and inactive regions (blocks) that are both in poor solvent and tend to be condensed in the absence of binding proteins. However, we show that the solvent quality for the active regions of chromatin can be regulated by the binding of protein complexes (e.g., RNAP and transcription factors). Using the theory of polymer brushes, we find that such binding leads to swelling of the active chromatin regions which in turn modifies the spatial organization of the inactive regions. In addition, we use simulations to study spherical chromatin micelles, whose cores comprise inactive regions and shells comprise active regions and bound protein complexes. In spherical micelles the swelling increases the number of inactive cores and controls their size. Thus, genetic modifications affecting the binding strength of chromatin-binding protein complexes may modulate the solvent quality experienced by chromatin and regulate the physical organization of the genome.


Assuntos
Cromatina , Micelas , Cromossomos , Fatores de Transcrição/genética , RNA Polimerase II/genética , Solventes
13.
Cells ; 12(6)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980273

RESUMO

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex transduces nuclear mechanical inputs suggested to control chromatin organization and gene expression; however, the underlying mechanism is currently unclear. We show here that the LINC complex is needed to minimize chromatin repression in muscle tissue, where the nuclei are exposed to significant mechanical inputs during muscle contraction. To this end, the genomic binding profiles of Polycomb, Heterochromatin Protein1 (HP1a) repressors, and of RNA-Pol II were studied in Drosophila larval muscles lacking functional LINC complex. A significant increase in the binding of Polycomb and parallel reduction of RNA-Pol-II binding to a set of muscle genes was observed. Consistently, enhanced tri-methylated H3K9 and H3K27 repressive modifications and reduced chromatin activation by H3K9 acetylation were found. Furthermore, larger tri-methylated H3K27me3 repressive clusters, and chromatin redistribution from the nuclear periphery towards nuclear center, were detected in live LINC mutant larval muscles. Computer simulation indicated that the observed dissociation of the chromatin from the nuclear envelope promotes growth of tri-methylated H3K27 repressive clusters. Thus, we suggest that by promoting chromatin-nuclear envelope binding, the LINC complex restricts the size of repressive H3K27 tri-methylated clusters, thereby limiting the binding of Polycomb transcription repressor, directing robust transcription in muscle fibers.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Cromatina/metabolismo , Simulação por Computador , Citoesqueleto/metabolismo , Fatores de Transcrição/metabolismo , Matriz Nuclear/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA/metabolismo
14.
Cells ; 12(19)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37830547

RESUMO

The biological mechanisms linking sedentary lifestyles and metabolic derangements are incompletely understood. In this study, temporal muscle inactivation in Drosophila larvae carrying a temperature-sensitive mutation in the shibire (shi1) gene was induced to mimic sedentary behavior during early life and study its transcriptional outcome. Our findings indicated a significant change in the epigenetic profile, as well as the genomic profile, of RNA Pol II binding in the inactive muscles relative to control, within a relatively short time period. Whole-genome analysis of RNA-Pol II binding to DNA by muscle-specific targeted DamID (TaDa) protocol revealed that muscle inactivity altered Pol II binding in 121 out of 2010 genes (6%), with a three-fold enrichment of genes coding for lncRNAs. The suppressed protein-coding genes included genes associated with longevity, DNA repair, muscle function, and ubiquitin-dependent proteostasis. Moreover, inducing muscle inactivation exerted a multi-level impact upon chromatin modifications, triggering an altered epigenetic balance of active versus inactive marks. The downregulated genes in the inactive muscles included genes essential for muscle structure and function, carbohydrate metabolism, longevity, and others. Given the multiple analogous genes in Drosophila for many human genes, extrapolating our findings to humans may hold promise for establishing a molecular link between sedentary behavior and metabolic diseases.


Assuntos
Drosophila , Transcriptoma , Animais , Humanos , Transcriptoma/genética , Epigenoma , Larva/genética , Comportamento Sedentário , RNA Polimerase II , Músculos
15.
Development ; 136(21): 3607-15, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19793885

RESUMO

Correct muscle migration towards tendon cells, and the adhesion of these two cell types, form the basis for contractile tissue assembly in the Drosophila embryo. While molecules promoting the attraction of muscles towards tendon cells have been described, signals involved in the arrest of muscle migration following the arrival of myotubes at their corresponding tendon cells have yet to be elucidated. Here, we describe a novel tendon-specific transmembrane protein, which we named LRT due to the presence of a leucine-rich repeat domain (LRR) in its extracellular region. Our analysis suggests that LRT acts non-autonomously to better target the muscle and/or arrest its migration upon arrival at its corresponding tendon cell. Muscles in embryos lacking LRT exhibited continuous formation of membrane extensions despite arrival at their corresponding tendon cells, and a partial failure of muscles to target their correct tendon cells. In addition, overexpression of LRT in tendon cells often stalled muscles located close to the tendon cells. LRT formed a protein complex with Robo, and we detected a functional genetic interaction between Robo and LRT at the level of muscle migration behavior. Taken together, our data suggest a novel mechanism by which muscles are targeted towards tendon cells as a result of LRT-Robo interactions. This mechanism may apply to the Robo-dependent migration of a wide variety of cell types.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Animais , Músculo Esquelético/metabolismo , Tendões/metabolismo , Proteínas Roundabout
16.
APL Bioeng ; 6(1): 010902, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35071965

RESUMO

Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.

17.
Trends Genet ; 24(2): 94-101, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18192064

RESUMO

The regulation of developmental processes at the RNA level enables selective and rapid modulation of gene expression. Studies in model organisms revealed the essential contribution of the signal transduction and activation of RNA (STAR) family of RNA binding proteins to developmental processes. STAR proteins coordinate the proper timing of developmental events by delaying expression or altering the mRNA or protein levels of essential genes. Recent functional analysis of the Drosophila melanogaster STAR protein, Held Out Wing (HOW), in the context of embryonic development, provided insight into its mode of activity. Here, we describe HOW's activity in the temporal repression or elevation of gene expression that is essential for coordinating the correct timing of instructive signals.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/genética , RNA/metabolismo , Processamento Alternativo , Animais , Sequência de Bases , Diferenciação Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Modelos Biológicos , Mutação , Neuroglia/citologia , Neuroglia/metabolismo , Conformação de Ácido Nucleico , Fenótipo , Tendões/citologia , Tendões/crescimento & desenvolvimento , Tendões/metabolismo
18.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33942717

RESUMO

Intact-organism imaging of Drosophila larvae reveals and quantifies chromatin-aqueous phase separation. The chromatin can be organized near the lamina layer of the nuclear envelope, conventionally fill the nucleus, be organized centrally, or as a wetting droplet. These transitions are controlled by changes in nuclear volume and the interaction of chromatin with the lamina (part of the nuclear envelope) at the nuclear periphery. Using a simple polymeric model that includes the key features of chromatin self-attraction and its binding to the lamina, we demonstrate theoretically that it is the competition of these two effects that determines the mode of chromatin distribution. The qualitative trends as well as the composition profiles obtained in our simulations compare well with the observed intact-organism imaging and quantification. Since the simulations contain only a small number of physical variables we can identify the generic mechanisms underlying the changes in the observed phase separations.


Assuntos
Núcleo Celular/fisiologia , Cromatina/fisiologia , Simulação por Computador , Animais , Drosophila , Larva
19.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078602

RESUMO

The three-dimensional organization of chromatin contributes to transcriptional control, but information about native chromatin distribution is limited. Imaging chromatin in live Drosophila larvae, with preserved nuclear volume, revealed that active and repressed chromatin separates from the nuclear interior and forms a peripheral layer underneath the nuclear lamina. This is in contrast to the current view that chromatin distributes throughout the nucleus. Furthermore, peripheral chromatin organization was observed in distinct Drosophila tissues, as well as in live human effector T lymphocytes and neutrophils. Lamin A/C up-regulation resulted in chromatin collapse toward the nuclear center and correlated with a significant reduction in the levels of active chromatin. Physical modeling suggests that binding of lamina-associated domains combined with chromatin self-attractive interactions recapitulate the experimental chromatin distribution profiles. Together, our findings reveal a novel mode of mesoscale organization of peripheral chromatin sensitive to lamina composition, which is evolutionary conserved.


Assuntos
Núcleo Celular , Cromatina , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos , Drosophila , Lâmina Nuclear/metabolismo
20.
Neuron ; 52(6): 969-80, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17178401

RESUMO

In both vertebrates and invertebrates, glial cells wrap axonal processes to ensure electrical conductance. Here we report that Crooked neck (Crn), the Drosophila homolog of the yeast Clf1p splicing factor, is directing peripheral glial cell maturation. We show that crooked neck is expressed and required in glial cells to control migration and axonal wrapping. Within the cytoplasm, Crn interacts with the RNA-binding protein HOW and then translocates to the nucleus where the Crn/HOW complex controls glial differentiation by facilitating splicing of specific target genes. By using a GFP-exon trap approach, we identified some of the in vivo target genes that encode proteins localized in autocellular septate junctions. In conclusion, here we show that glial cell differentiation is controlled by a cytoplasmic assembly of splicing components, which upon translocation to the nucleus promote the splicing of genes involved in the assembly of cellular junctions.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Neuroglia/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Processos de Crescimento Celular , Linhagem Celular , Núcleo Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Genes de Insetos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Masculino , Microscopia Eletrônica de Transmissão/métodos , Mutação/fisiologia , Neuroglia/ultraestrutura , Proteínas Nucleares/genética , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA/genética , Transfecção/métodos , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA