RESUMO
New nitrosonium manganese(II) nitrate, (NO)Mn6(NO3)13, has been synthesized and structurally characterized. In the temperature range of 45-298 K, the crystal is hexagonal (centrosymmetric sp. gr. P63/m). Mn2+ ions are assembled into tubes along axis c with both NO3- filling and coating. The nitrosonium cation is located in the framework cavity and is disordered by a 3-fold axis. At the temperature TS1 = 190 K, a structural phase transition related to the libration of the intertube NO3 group and a small variation of Mn polyhedron is observed. Moreover, the anomalies in physical properties of (NO)Mn6(NO3)13 allow suggesting that ordering of NO+ units occurs at low temperatures. The antiferromagnetic ordering in this compound is preceded by the formation of a short-range correlation regime at about 25 K and takes place in two steps at TN1 = 12.0 K and TN2 = 8.4 K.
RESUMO
We synthesized single crystals of Na0.55Ni6(OH)3(H0.61PO4)4 (I) and polycrystals of (Na, Ni)0.64Ni5.68(OH)3(H0.67PO4)4 (II) with ellenbergerite-like structures using the hydrothermal method. The phases crystallize in the hexagonal space group P63mc with the following unit cell parameters: a = 12.5342(1) Å, c = 4.9470(1) Å, and V = 673.08(2) Å3 for I; a = 12.4708(2) Å, c = 4.9435(2) Å, and V = 665.82(2) Å3 for II; and Z = 2. Their crystal structures are based on a 3D framework built from NiO6 octahedra and PO4 tetrahedra. The difference between I and II lies in the way the structural channels are filled along the [001] direction. These channels accommodate segments of Na- and (Na, Ni)-centered chains of face-sharing octahedra in the structures I and II, respectively. The magnetic susceptibility χ and the specific heat Cp evidence pronounced low-dimensional magnetic behavior at elevated temperatures and the formation of the weakly ferromagnetic long-range order at TNI = 61 K and TNII = 63 K. Analysis of the χ(T) data within both chain and dimer spin models allows the estimation of the leading exchange interaction parameters in the compounds under study.
RESUMO
We report the first highly conducting single-molecule magnet, (BEDO)4[ReF6]·6H2O [1; BEDO = bis(ethylenedioxo)tetrathiafulvalene], whose conductivity and single-molecule magnetism coexist in the same temperature range. The compound was synthesized by BEDO electrocrystallization in the presence of (Ph4P)2[ReF6]·2H2O and characterized by crystallography and measurements of the conductivity and alternating-current magnetic susceptibility.
RESUMO
The copper salt of trifluoroacetic acid, Cu(CF3 COO)2 , offers a new platform to investigate the quantum ground states of low-dimensional magnets. In practice, it realizes the ideal case of a solid hosting essentially isolated magnetic monolayers. These entities are constituted by well-separated two-leg half-integer spin ladders organized in a zigzag fashion. The ladders are comprised of dimeric units of edge-sharing tetragonal pyramids coupled through carbon ions. The spin-gap state in this compound was revealed by static and dynamic magnetic measurements. No indications of long range magnetic ordering down to liquid helium temperature were obtained in specific heat measurements. First principles calculations allow estimation of the main exchange interaction parameters, J⥠=176â K and J⥠=12â K, consistent with the weakly interacting dimers model.
RESUMO
The Bi3n+1Ti7Fe3n-3O9n+11 materials are built of (001)p plane-parallel perovskite blocks with a thickness of n (Ti,Fe)O6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge-sharing (Ti,Fe)O6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mössbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of ±ap along [100]p. The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3ap, b = bp, c = 2(n + 1)cp and a = 3ap, b = bp, c = 2(n + 1)cp - ap, respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O2 layers at the border of the perovskite blocks. The coupling is strong in the n = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below TN = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.
RESUMO
A novel iron fluorophosphite, NaFe3(HPO3)2((H,F)PO2OH)6, was synthesized by a dry low-temperature synthesis route. The phase was shown to be electrochemically active for reversible insertion of Na(+) ions, with an average discharge voltage of 2.5 V and an experimental capacity at low rates of up to 90 mAhg(-1). Simple synthesis, low-cost materials, excellent capacity retention, and efficiency suggest this class of material is competitive with similar oxyanion-based compounds as a cathode material for Na batteries. The characterization of physical properties by means of magnetization, specific heat, and electron spin resonance measurements confirms the presence of two magnetically nonequivalent Fe(3+) sites. The compound orders magnetically at TC ≈ 9.4 K into a state with spontaneous magnetization.
RESUMO
The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) Å, b = 3.85076(4) Å, c = 33.0722(6) Å, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector ½[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over ±1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.
RESUMO
The manganese orthophosphate, Mn3(PO4)2, is characterized by the rich variety of polymorphous modifications, α-, ß'-, and γ-phases, crystallized in monoclinic P21/c (P21/n) space group type with unit cell volume ratios of 2:6:1. The crystal structures of these phases are constituted by three-dimensional framework of corner- and edge-sharing [MnO5] and [MnO6] polyhedra strengthened by [PO4] tetrahedra. All compounds experience long-range antiferromagnetic order at Neel temperature TN = 21.9 K (α-phase), 12.3 K (ß'-phase), and 13.3 K (γ-phase). Additionally, second magnetic phase transition takes place at T* = 10.3 K in ß'-phase. The magnetization curves of α- and ß'-modifications evidence spin-floplike features at B = 1.9 and 3.7 T, while the γ-Mn3(PO4)2 stands out for an extended one-third magnetization plateau stabilized in the range of magnetic field B = 7.5-23.5 T. The first-principles calculations define the main paths of superexchange interaction between Mn spins in these polymorphs. The spin model for α-phase is found to be characterized by collection of uniform and alternating chains, which are coupled in all three directions. The strongest magnetic exchange interaction in γ-phase emphasizes the trimer units, which make chains that are in turn weakly coupled to each other. The spin model of ß'-phase turns out to be more complex compared to α- or γ-phase. It shows complex chain structures involving exchange interactions between Mn2 (Mn2', Mn2â³) and Mn3 (Mn3', Mn3â³). These chains interact through exchanges involving Mn1 (Mn1', Mn1â³) spins.
RESUMO
We report the synthesis and characterization of the new bismuth iron selenite oxochloride Bi2Fe(SeO3)2OCl3. The main feature of its crystal structure is the presence of a reasonably isolated set of spin S = 5/2 zigzag chains of corner-sharing FeO6 octahedra decorated with BiO4Cl3, BiO3Cl3, and SeO3 groups. When the temperature is lowered, the magnetization passes through a broad maximum at Tmax ≈ 130 K, which indicates the formation of a magnetic short-range correlation regime. The same behavior is demonstrated by the integral electron spin resonance intensity. The absorption is characterized by the isotropic effective factor g ≈ 2 typical for high-spin Fe(3+) ions. The broadening of ESR absorption lines at low temperatures with the critical exponent ß = 7/4 is consistent with the divergence of the temperature-dependent correlation length expected for the quasi-one-dimensional antiferromagnetic spin chain upon approaching the long-range ordering transition from above. At TN = 13 K, Bi2Fe(SeO3)2OCl3 exhibits a transition into an antiferromagnetically ordered state, evidenced in the magnetization, specific heat, and Mössbauer spectra. At T < TN, the (57)Fe Mössbauer spectra reveal a low saturated value of the hyperfine field Hhf ≈ 44 T, which indicates a quantum spin reduction of spin-only magnetic moment ΔS/S ≈ 20%. The determination of exchange interaction parameters using first-principles calculations validates the quasi-one-dimensional nature of magnetism in this compound.
RESUMO
Mixed potassium-manganese vanadate-carbonate, K(2)Mn(3)(VO(4))(2)(CO(3)), represents a novel structure type; it has been synthesized hydrothermally from the system MnCl(2)-K(2)CO(3)-V(2)O(5)-H(2)O. Its hexagonal crystal structure was determined by single-crystal X-ray diffraction with a = 5.201(1) Å, c = 22.406(3) Å, space group P6(3)/m, Z = 2, ρ(c) = 3.371 g/cm(3), and R = 0.022. The layered structure of the compound can be described as a combination of honeycomb-type modules of [MnO(6)] octahedra and [VO(4)] tetrahedra, alternating in the [001] direction with layers of [MnCO(3)] built by [MnO(5)] trigonal bipyramids and [CO(3)] planar triangles, sharing oxygen vertices. The K(+) ions are placed along channels of the framework, elongated in the [100], [010], and [110] directions. The title compound exhibits rich physical properties reflected in a phase transition of presumably Jahn-Teller origin at T(3) = 80-100 K as well as two successive magnetic phase transitions at T(2) = 3 K and T(1) = 2 K into a weakly ferromagnetic ground state, as evidenced in magnetization, specific heat, and X-band electron spin resonance measurements. A negative Weiss temperature Θ = -114 K and strongly reduced effective magnetic moment µ(eff)(2) ~ 70 µ(B)(2) per formula unit suggest that antiferromagnetic exchange interactions dominate in the system. Divalent manganese is present in a high-spin state, S = 5/2, in the octahedral environment and a low-spin state, S = ½, in the trigonal-bipyramidal coordination.
RESUMO
Anhydrous copper tellurite sulfate, Cu3TeO3(SO4)2, has been synthesized via vapor transport reactions in sealed silica glass ampoules. In measurements of magnetization M, magnetic susceptibility χ, specific heat Cp and X-band electron spin resonance, a long-range antiferromagnetic order at TN = 13 K and an H-T magnetic phase diagram have been established. One-third of Cu2+ ions were found to form magnetically silent dimers. A peak in dielectric permittivity ε, which accompanies the Néel order, allows considering Cu3TeO3(SO4)2 as a magnetoelectric multiferroic material of the second type. Density functional theory calculations provided estimations of leading exchange interaction parameters.
RESUMO
Terbium tritelluride, TbTe3, orders antiferromagnetically in three steps at TN1 = 6.7 K, TN2 = 5.7 K, and TN3 = 5.4 K, preceded by a correlation hump in magnetic susceptibility at T* ~8 K. Combining thermodynamic, i.e., specific heat Cp and magnetization M, and transport, i.e., resistance R, measurements we established the boundaries of two commensurate and one charge density wave modulated phases in a magnetic field oriented along principal crystallographic axes. Based on these measurements, the magnetic phase diagrams of TbTe3 at Hâa, Hâb and Hâc were constructed.
RESUMO
The appearance of electrically neutral water molecules in the structure of cobalt dinitrate dihydrate, Co(NO3)2â 2H2O, drastically changes its magnetic properties as compared to its waterless counterpart, Co(NO3)2. The title compound shows Ising-like behavior reflected in its thermodynamic properties. It experiences long-range antiferromagnetic order at TN = 20.5 K and metamagnetic transition at µ0HC = 0.76 T. First-principles calculations produce the values of leading exchange interactions J1 ~ 10 K and J2 ~ 0.5 K and single-ion anisotropy D ~ 1 K which allows us to consider Co(NO3)2â 2H2O as a quasi-two-dimensional magnetic system.
RESUMO
The manganese end member of triplite-triploidite series of compounds, Mn2(PO4)OH, is synthesized by a hydrothermal method. Its crystal structure is refined in the space group P21/c with a = 12.411(1) Å, b = 13.323(1) Å, c = 10.014(1) Å, ß = 108.16(1), V = 1573.3 Å3, Z = 8, and R = 0.0375. Evidenced in measurements of magnetization M and specific heat Cp, Mn2(PO4)OH reaches a long range antiferromagnetic order at TN = 4.6 K. As opposed to both triplite Mn2(PO4)F and triploidite-type Co2(PO4)F, the title compound is magnetically frustrated being characterized by the ratio of Curie-Weiss temperature Θ to Néel temperature TN of about 20. The large value of frustration strength |Θ|/TN stems from the twisted saw tooth chain geometry of corner sharing triangles of Mn polyhedra, which may be isolated within tubular fragments of a triploidite crystal structure.
RESUMO
The novel borophosphate Rb2.3(H2O)0.8Mn3[B4P6O24(O,OH)2] was prepared under hydrothermal conditions at 553 K. Its crystal structure was determined using single-crystal X-ray diffraction data obtained from a non-merohedral twin and refined against F2 to R = 0.057. The compound crystallizes in the orthorhombic space group Pbcn, with unit-cell parameters a = 20.076(2) Å, b = 9.151(1) Å, c = 12.257(1) Å, V = 2251.8(2) Å3, and Z = 4. The title compound is the first example of a borophosphate with manganese ions adopting both octahedral and tetrahedral coordinations. Its unique crystal structure is formed by borophosphate slabs and chains of Mn2+-centered polyhedra sharing edges and vertices. These 2D and 1D fragments interconnect into a framework with open channels that accommodate Rb+ cations and water molecules. Topological relationships between borophosphates built from three-membered rings of two borate and one phosphate tetrahedra sharing oxygen vertices, amended by additional PO4 and HPO4 tetrahedra, are discussed. The temperature dependence of the magnetic susceptibility of Rb2.3(H2O)0.8Mn3[B4P6O24(O,OH)2] reveals predominant antiferromagnetic exchange interactions and the high-temperature effective magnetic moment corresponding to the high-spin S = 5/2 state of Mn2+ ions. At 12.5 K, a magnetic transition is evidenced by ac-susceptibility and specific heat measurements. A spin-trimer model with the leading exchange interaction J â¼ 3.2 K is derived from density-functional band-structure calculations and accounts for all experimental observations.
RESUMO
The novel phosphate RbCuAl(PO4)2 was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using single-crystal X-ray diffraction data and refined against F(2) to R = 0.026. The compound crystallizes in the monoclinic space group P21/c, with unit-cell parameters a = 5.0723(8) Å, b = 14.070(2) Å, c = 9.352(1) Å, ß = 100.41(1), V = 656.4(2) Å(3), and Z = 4. The crystal structure is based on an open 3D aluminophosphate framework built by AlO5 bipyramids and PO4 tetrahedra sharing oxygen vertices. Channels in the [100] and [001] directions accommodate Rb(+) cations and chains of Cu-centered octahedra alternatively sharing cis- and trans-edges. The new phase is characterized by the structure type established for isotypic iron phosphates KMFe(PO4)2, where M = Fe/Ni, Ni, Mg or Co. It also shows topological relationships with Pb2Ni(PO4)2 and Fe(3+)Fe(2+)0.5(H2O)2(HPO4)2 structures. The RbCuAl(PO4)2 exhibits rather peculiar physical properties evidenced in specific heat and magnetization measurements. It releases a significant part of magnetic entropy well above the Neel temperature TN = 10.5 K and possesses a spontaneous magnetic moment at lower temperatures. The origin of the spontaneous moment is ascribed to the canting of a pristine antiferromagnetic structure due to the interchain Dzyaloshinskii-Moriya exchange interaction.
RESUMO
The superconducting transition temperature (Tc) of tetragonal Fe1+δSe was enhanced from 8.5 K to 44 K by chemical structure modification. While insertion of large alkaline cations like K or solvated lithium and iron cations in the interlayer space, the [Fe2Se2] interlayer separation increases significantly from 5.5 Å in native Fe1+δSe to >7 Å in KxFe1-ySe and to >9 Å in Li1-xFex(OH)Fe1-ySe, we report on an electrochemical route to modify the superconducting properties of Fe1+δSe. In contrast to conventional chemical (solution) techniques, the electrochemical approach allows to insert non-solvated Li(+) into the Fe1+δSe structure which preserves the native arrangement of [Fe2Se2] layers and their small separation. The amount of intercalated lithium is extremely small (about 0.07 Li(+) per f.u.), however, its incorporation results in the enhancement of Tc up to â¼44 K. The quantum-mechanical calculations show that Li occupies the octahedrally coordinated position, while the [Fe2Se2] layers remain basically unmodified. The obtained enhancement of the electronic density of states at the Fermi level clearly exceeds the effect expected on basis of rigid band behavior.
RESUMO
The novel phase Na2-xCo6(OH)3[HPO4][Hx/3PO4]3 (x≈ 1.1) was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using single-crystal X-ray diffraction data and refined against F(2) to R = 0.052, including positions of all hydrogen atoms. The compound crystallizes in the hexagonal space group P63mc, with unit-cell parameters a = 12.630(3) Å, c = 5.017(1) Å, V = 693.1(3) Å(3), and Z = 2. The crystal structure is based on a 3D framework built from CoO6 octahedra and PO4 tetrahedra. Channels in the [001] direction accommodate columns of Na-centered octahedra sharing faces. The compound is a new structural representative of the topology shown by aluminosilicate mineral ellenbergerite and its numerous natural and synthetic varieties. Magnetic susceptibility measurements revealed a strong antiferromagnetic interaction and magnetic transition to low temperature spin-canted phase at TN = 44 K. The physical properties of the title compound are found to be very similar to those of the structurally related arsenate Co1-xCo6(OH)3[H2x/3AsO4]3[HAsO4] and vanadate Co7(OH)2(H2O)[VO4]4.
RESUMO
Two synthetic routes-ion-exchange preparation from layered Na(3)Ni(2)SbO(6) at 300 °C and direct solid-state synthesis at 1150 °C resulted in layered Li(3)Ni(2)SbO(6), a cation-ordered derivative from the rocksalt type. The Fddd form reported earlier could not be reproduced. According to the XRD Rietveld analysis, Li(3)Ni(2)SbO(6) is a pseudohexagonal monoclinic structure, C2/m, with a = 5.1828(2) Å, b = 8.9677(3) Å, c = 5.1577(2) Å, ß = 109.696(2)°. No Li/Ni mixed occupancy was detected. At high temperatures, the magnetic susceptibility follows the Curie-Weiss law with a positive value of Weiss temperature, â¼8 K, indicating a predominance of ferromagnetic interactions. However, Li(3)Ni(2)SbO(6) orders antiferromagnetically at T(N)â¼ 15 K. The effective magnetic moment is 4.3 µ(B)/f.u. which satisfactorily agrees with theoretical estimations assuming high-spin configuration of Ni(2+) (S = 1). Electron spin resonance (ESR) spectra show single Lorentzian shape line attributed to Ni(2+) ion in octahedral coordination. The absorption is characterized by isotropic temperature independent effective g-factor g = 2.150 ± 0.005. In accordance with the layered honeycomb crystal structure determined for Li(3)Ni(2)SbO(6), the superexchange interaction between Ni(2+) ions through Ni-O-Ni pathways within Ni(2)SbO(6) layers are assumed to be ferromagnetic, while the dominant interaction between layers is antiferromagnetic.