Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 23(1): 110, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328784

RESUMO

OBJECTIVE: Precision medicine requires reliable identification of variation in patient-level outcomes with different available treatments, often termed treatment effect heterogeneity. We aimed to evaluate the comparative utility of individualized treatment selection strategies based on predicted individual-level treatment effects from a causal forest machine learning algorithm and a penalized regression model. METHODS: Cohort study characterizing individual-level glucose-lowering response (6 month reduction in HbA1c) in people with type 2 diabetes initiating SGLT2-inhibitor or DPP4-inhibitor therapy. Model development set comprised 1,428 participants in the CANTATA-D and CANTATA-D2 randomised clinical trials of SGLT2-inhibitors versus DPP4-inhibitors. For external validation, calibration of observed versus predicted differences in HbA1c in patient strata defined by size of predicted HbA1c benefit was evaluated in 18,741 patients in UK primary care (Clinical Practice Research Datalink). RESULTS: Heterogeneity in treatment effects was detected in clinical trial participants with both approaches (proportion predicted to have a benefit on SGLT2-inhibitor therapy over DPP4-inhibitor therapy: causal forest: 98.6%; penalized regression: 81.7%). In validation, calibration was good with penalized regression but sub-optimal with causal forest. A strata with an HbA1c benefit > 10 mmol/mol with SGLT2-inhibitors (3.7% of patients, observed benefit 11.0 mmol/mol [95%CI 8.0-14.0]) was identified using penalized regression but not causal forest, and a much larger strata with an HbA1c benefit 5-10 mmol with SGLT2-inhibitors was identified with penalized regression (regression: 20.9% of patients, observed benefit 7.8 mmol/mol (95%CI 6.7-8.9); causal forest 11.6%, observed benefit 8.7 mmol/mol (95%CI 7.4-10.1). CONCLUSIONS: Consistent with recent results for outcome prediction with clinical data, when evaluating treatment effect heterogeneity researchers should not rely on causal forest or other similar machine learning algorithms alone, and must compare outputs with standard regression, which in this evaluation was superior.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Estudos de Coortes , Medicina de Precisão , Dipeptidil Peptidase 4/uso terapêutico , Transportador 2 de Glucose-Sódio/uso terapêutico , Hipoglicemiantes/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Resultado do Tratamento
2.
BMC Med ; 19(1): 213, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461893

RESUMO

BACKGROUND: The literature paints a complex picture of the association between mortality risk and ICU strain. In this study, we sought to determine if there is an association between mortality risk in intensive care units (ICU) and occupancy of beds compatible with mechanical ventilation, as a proxy for strain. METHODS: A national retrospective observational cohort study of 89 English hospital trusts (i.e. groups of hospitals functioning as single operational units). Seven thousand one hundred thirty-three adults admitted to an ICU in England between 2 April and 1 December, 2020 (inclusive), with presumed or confirmed COVID-19, for whom data was submitted to the national surveillance programme and met study inclusion criteria. A Bayesian hierarchical approach was used to model the association between hospital trust level (mechanical ventilation compatible), bed occupancy, and in-hospital all-cause mortality. Results were adjusted for unit characteristics (pre-pandemic size), individual patient-level demographic characteristics (age, sex, ethnicity, deprivation index, time-to-ICU admission), and recorded chronic comorbidities (obesity, diabetes, respiratory disease, liver disease, heart disease, hypertension, immunosuppression, neurological disease, renal disease). RESULTS: One hundred thirty-five thousand six hundred patient days were observed, with a mortality rate of 19.4 per 1000 patient days. Adjusting for patient-level factors, mortality was higher for admissions during periods of high occupancy (> 85% occupancy versus the baseline of 45 to 85%) [OR 1.23 (95% posterior credible interval (PCI): 1.08 to 1.39)]. In contrast, mortality was decreased for admissions during periods of low occupancy (< 45% relative to the baseline) [OR 0.83 (95% PCI 0.75 to 0.94)]. CONCLUSION: Increasing occupancy of beds compatible with mechanical ventilation, a proxy for operational strain, is associated with a higher mortality risk for individuals admitted to ICU. Further research is required to establish if this is a causal relationship or whether it reflects strain on other operational factors such as staff. If causal, the result highlights the importance of strategies to keep ICU occupancy low to mitigate the impact of this type of resource saturation.


Assuntos
Ocupação de Leitos/estatística & dados numéricos , COVID-19/mortalidade , Causas de Morte , Cuidados Críticos/estatística & dados numéricos , Mortalidade Hospitalar , Unidades de Terapia Intensiva , Ventiladores Mecânicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
3.
Crit Care Med ; 49(2): 209-214, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33105150

RESUMO

OBJECTIVES: To measure temporal trends in survival over time in people with severe coronavirus disease 2019 requiring critical care (high dependency unit or ICU) management, and to assess whether temporal variation in mortality was explained by changes in patient demographics and comorbidity burden over time. DESIGN: Retrospective observational cohort; based on data reported to the COVID-19 Hospitalisation in England Surveillance System. The primary outcome was in-hospital 30-day all-cause mortality. Unadjusted survival was estimated by calendar week of admission, and Cox proportional hazards models were used to estimate adjusted survival, controlling for age, sex, ethnicity, major comorbidities, and geographical region. SETTING: One hundred eight English critical care units. PATIENTS: All adult (18 yr +) coronavirus disease 2019 specific critical care admissions between March 1, 2020, and June 27, 2020. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: Twenty-one thousand eighty-two critical care patients (high dependency unit n = 15,367; ICU n = 5,715) were included. Unadjusted survival at 30 days was lowest for people admitted in late March in both high dependency unit (71.6% survival) and ICU (58.0% survival). By the end of June, survival had improved to 92.7% in high dependency unit and 80.4% in ICU. Improvements in survival remained after adjustment for patient characteristics (age, sex, ethnicity, and major comorbidities) and geographical region. CONCLUSIONS: There has been a substantial improvement in survival amongst people admitted to critical care with coronavirus disease 2019 in England, with markedly higher survival rates in people admitted in May and June compared with those admitted in March and April. Our analysis suggests this improvement is not due to temporal changes in the age, sex, ethnicity, or major comorbidity burden of admitted patients.


Assuntos
COVID-19/mortalidade , Cuidados Críticos/estatística & dados numéricos , Estado Terminal/mortalidade , Sobreviventes/estatística & dados numéricos , Adulto , Idoso , COVID-19/terapia , Estudos de Coortes , Estado Terminal/terapia , Inglaterra , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Taxa de Sobrevida
4.
Crit Care Med ; 49(11): 1895-1900, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259660

RESUMO

OBJECTIVES: To determine whether the previously described trend of improving mortality in people with coronavirus disease 2019 in critical care during the first wave was maintained, plateaued, or reversed during the second wave in United Kingdom, when B117 became the dominant strain. DESIGN: National retrospective cohort study. SETTING: All English hospital trusts (i.e., groups of hospitals functioning as single operational units), reporting critical care admissions (high dependency unit and ICU) to the Coronavirus Disease 2019 Hospitalization in England Surveillance System. PATIENTS: A total of 49,862 (34,336 high dependency unit and 15,526 ICU) patients admitted between March 1, 2020, and January 31, 2021 (inclusive). INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: The primary outcome was inhospital 28-day mortality by calendar month of admission, from March 2020 to January 2021. Unadjusted mortality was estimated, and Cox proportional hazard models were used to estimate adjusted mortality, controlling for age, sex, ethnicity, major comorbidities, social deprivation, geographic location, and operational strain (using bed occupancy as a proxy). Mortality fell to trough levels in June 2020 (ICU: 22.5% [95% CI, 18.2-27.4], high dependency unit: 8.0% [95% CI, 6.4-9.6]) but then subsequently increased up to January 2021: (ICU: 30.6% [95% CI, 29.0-32.2] and high dependency unit, 16.2% [95% CI, 15.3-17.1]). Comparing patients admitted during June-September 2020 with those admitted during December 2020-January 2021, the adjusted mortality was 59% (CI range, 39-82) higher in high dependency unit and 88% (CI range, 62-118) higher in ICU for the later period. This increased mortality was seen in all subgroups including those under 65. CONCLUSIONS: There was a marked deterioration in outcomes for patients admitted to critical care at the peak of the second wave of coronavirus disease 2019 in United Kingdom (December 2020-January 2021), compared with the post-first-wave period (June 2020-September 2020). The deterioration was independent of recorded patient characteristics and occupancy levels. Further research is required to determine to what extent this deterioration reflects the impact of the B117 variant of concern.


Assuntos
COVID-19/mortalidade , Mortalidade Hospitalar/tendências , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Ocupação de Leitos , Comorbidade , Cuidados Críticos , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2 , Reino Unido/epidemiologia , Adulto Jovem
6.
BMJ Open ; 14(1): e078135, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296292

RESUMO

OBJECTIVE: This study aimed to compare clinical and sociodemographic risk factors for severe COVID-19, influenza and pneumonia, in people with diabetes. DESIGN: Population-based cohort study. SETTING: UK primary care records (Clinical Practice Research Datalink) linked to mortality and hospital records. PARTICIPANTS: Individuals with type 1 and type 2 diabetes (COVID-19 cohort: n=43 033 type 1 diabetes and n=584 854 type 2 diabetes, influenza and pneumonia cohort: n=42 488 type 1 diabetes and n=585 289 type 2 diabetes). PRIMARY AND SECONDARY OUTCOME MEASURES: COVID-19 hospitalisation from 1 February 2020 to 31 October 2020 (pre-COVID-19 vaccination roll-out), and influenza and pneumonia hospitalisation from 1 September 2016 to 31 May 2019 (pre-COVID-19 pandemic). Secondary outcomes were COVID-19 and pneumonia mortality. Associations between clinical and sociodemographic risk factors and each outcome were assessed using multivariable Cox proportional hazards models. In people with type 2 diabetes, we explored modifying effects of glycated haemoglobin (HbA1c) and body mass index (BMI) by age, sex and ethnicity. RESULTS: In type 2 diabetes, poor glycaemic control and severe obesity were consistently associated with increased risk of hospitalisation for COVID-19, influenza and pneumonia. The highest HbA1c and BMI-associated relative risks were observed in people aged under 70 years. Sociodemographic-associated risk differed markedly by respiratory infection, particularly for ethnicity. Compared with people of white ethnicity, black and south Asian groups had a greater risk of COVID-19 hospitalisation, but a lesser risk of pneumonia hospitalisation. Risk factor associations for type 1 diabetes and for type 2 diabetes mortality were broadly consistent with the primary analysis. CONCLUSIONS: Clinical risk factors of high HbA1c and severe obesity are consistently associated with severe outcomes from COVID-19, influenza and pneumonia, especially in younger people. In contrast, associations with sociodemographic risk factors differed by type of respiratory infection. This emphasises that risk stratification should be specific to individual respiratory infections.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Influenza Humana , Obesidade Mórbida , Pneumonia , Infecções Respiratórias , Humanos , Idoso , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , COVID-19/epidemiologia , Pandemias , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Influenza Humana/epidemiologia , Hemoglobinas Glicadas , Estudos de Coortes , Vacinas contra COVID-19 , Fatores de Risco , Pneumonia/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Reino Unido/epidemiologia
7.
Lancet Digit Health ; 4(12): e873-e883, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36427949

RESUMO

BACKGROUND: Current treatment guidelines do not provide recommendations to support the selection of treatment for most people with type 2 diabetes. We aimed to develop and validate an algorithm to allow selection of optimal treatment based on glycaemic response, weight change, and tolerability outcomes when choosing between SGLT2 inhibitor or DPP-4 inhibitor therapies. METHODS: In this retrospective cohort study, we identified patients initiating SGLT2 and DPP-4 inhibitor therapies after Jan 1, 2013, from the UK Clinical Practice Research Datalink (CPRD). We excluded those who received SGLT2 or DPP-4 inhibitors as first-line treatment or insulin at the same time, had estimated glomerular filtration rate (eGFR) of less than 45 mL/min per 1·73 m2, or did not have a valid baseline glycated haemoglobin (HbA1c) measure (<53 or ≥120 mmol/mol). The primary efficacy outcome was the HbA1c value reached 6 months after drug initiation, adjusted for baseline HbA1c. Clinical features associated with differential HbA1c outcome on the two therapies were identified in CPRD (n=26 877), and replicated in reanalysis of 14 clinical trials (n=10 414). An algorithm to predict individual-level differential HbA1c outcome on the two therapies was developed in CPRD (derivation; n=14 069) and validated in head-to-head trials (n=2499) and CPRD (independent validation; n=9376). In CPRD, we further explored heterogeneity in 6-month weight change and treatment discontinuation. FINDINGS: Among 10 253 patients initiating SGLT2 inhibitors and 16 624 patients initiating DPP-4 inhibitors in CPRD, baseline HbA1c, age, BMI, eGFR, and alanine aminotransferase were associated with differential HbA1c outcome with SGLT2 inhibitor and DPP-4 inhibitor therapies. The median age of participants was 62·0 years (IQR 55·0-70·0). 10 016 (37·3%) were women and 16 861 (62·7%) were men. An algorithm based on these five features identified a subgroup, representing around four in ten CPRD patients, with a 5 mmol/mol or greater observed benefit with SGLT2 inhibitors in all validation cohorts (CPRD 8·8 mmol/mol [95% CI 7·8-9·8]; CANTATA-D and CANTATA-D2 trials 5·8 mmol/mol [3·9-7·7]; BI1245.20 trial 6·6 mmol/mol [2·2-11·0]). In CPRD, predicted differential HbA1c response with SGLT2 inhibitor and DPP-4 inhibitor therapies was not associated with weight change. Overall treatment discontinuation within 6 months was similar in patients predicted to have an HbA1c benefit with SGLT2 inhibitors over DPP-4 inhibitors (median 15·2% [13·2-20·3] vs 14·4% [12·9-16·7]). A smaller subgroup predicted to have greater HbA1c reduction with DPP-4 inhibitors were twice as likely to discontinue SGLT2 inhibitors than DPP-4 inhibitors (median 26·8% [23·4-31·0] vs 14·8% [12·9-16·8]). INTERPRETATION: A validated treatment selection algorithm for SGLT2 inhibitor and DPP-4 inhibitor therapies can support decisions on optimal treatment for people with type 2 diabetes. FUNDING: BHF-Turing Cardiovascular Data Science Award and the UK Medical Research Council.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Algoritmos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/uso terapêutico , Estudos Retrospectivos , Transportador 2 de Glucose-Sódio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Ensaios Clínicos como Assunto
8.
PLoS One ; 16(7): e0255377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324569

RESUMO

OBJECTIVES: To describe the relationship between reported serious operational problems (SOPs), and mortality for patients with COVID-19 admitted to intensive care units (ICUs). DESIGN: English national retrospective cohort study. SETTING: 89 English hospital trusts (i.e. small groups of hospitals functioning as single operational units). PATIENTS: All adults with COVID-19 admitted to ICU between 2nd April and 1st December, 2020 (n = 6,737). INTERVENTIONS: N/A. MAIN OUTCOMES AND MEASURES: Hospital trusts routinely submit declarations of whether they have experienced 'serious operational problems' in the last 24 hours (e.g. due to staffing issues, adverse weather conditions, etc.). Bayesian hierarchical models were used to estimate the association between in-hospital mortality (binary outcome) and: 1) an indicator for whether a SOP occurred on the date of a patient's admission, and; 2) the proportion of the days in a patient's stay that had a SOP occur within their trust. These models were adjusted for individual demographic characteristics (age, sex, ethnicity), and recorded comorbidities. RESULTS: Serious operational problems (SOPs) were common; reported in 47 trusts (52.8%) and were present for 2,701 (of 21,716; 12.4%) trust days. Overall mortality was 37.7% (2,539 deaths). Admission during a period of SOPs was associated with a substantially increased mortality; adjusted odds ratio (OR) 1.34 (95% posterior credible interval (PCI): 1.07 to 1.68). Mortality was also associated with the proportion of a patient's admission duration that had concurrent SOPs; OR 1.47 (95% PCI: 1.10 to 1.96) for mortality where SOPs were present for 100% compared to 0% of the stay. CONCLUSION AND RELEVANCE: Serious operational problems at the trust-level are associated with a significant increase in mortality in patients with COVID-19 admitted to critical care. The link isn't necessarily causal, but this observation justifies further research to determine if a binary indicator might be a valid prognostic marker for deteriorating quality of care.


Assuntos
COVID-19/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , COVID-19/virologia , Cuidados Críticos/métodos , Feminino , Mortalidade Hospitalar , Hospitalização , Hospitais , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Razão de Chances , Admissão do Paciente , Estudos Retrospectivos , Recursos Humanos , Adulto Jovem
9.
Diabetes Care ; 44(1): 50-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33097559

RESUMO

OBJECTIVE: To describe the relationship between type 2 diabetes and all-cause mortality among adults with coronavirus disease 2019 (COVID-19) in the critical care setting. RESEARCH DESIGN AND METHODS: This was a nationwide retrospective cohort study in people admitted to hospital in England with COVID-19 requiring admission to a high dependency unit (HDU) or intensive care unit (ICU) between 1 March 2020 and 27 July 2020. Cox proportional hazards models were used to estimate 30-day in-hospital all-cause mortality associated with type 2 diabetes, with adjustment for age, sex, ethnicity, obesity, and other major comorbidities (chronic respiratory disease, asthma, chronic heart disease, hypertension, immunosuppression, chronic neurological disease, chronic renal disease, and chronic liver disease). RESULTS: A total of 19,256 COVID-19-related HDU and ICU admissions were included in the primary analysis, including 13,809 HDU (mean age 70 years) and 5,447 ICU (mean age 58 years) admissions. Of those admitted, 3,524 (18.3%) had type 2 diabetes and 5,077 (26.4%) died during the study period. Patients with type 2 diabetes were at increased risk of death (adjusted hazard ratio [aHR] 1.23 [95% CI 1.14, 1.32]), and this result was consistent in HDU and ICU subsets. The relative mortality risk associated with type 2 diabetes decreased with higher age (age 18-49 years aHR 1.50 [95% CI 1.05, 2.15], age 50-64 years 1.29 [1.10, 1.51], and age ≥65 years 1.18 [1.09, 1.29]; P value for age-type 2 diabetes interaction = 0.002). CONCLUSIONS: Type 2 diabetes may be an independent prognostic factor for survival in people with severe COVID-19 requiring critical care treatment, and in this setting the risk increase associated with type 2 diabetes is greatest in younger people.


Assuntos
COVID-19/complicações , COVID-19/mortalidade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/mortalidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Comorbidade , Cuidados Críticos/estatística & dados numéricos , Inglaterra/epidemiologia , Feminino , Mortalidade Hospitalar , Hospitalização , Humanos , Unidades de Terapia Intensiva , Falência Renal Crônica/complicações , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Adulto Jovem
10.
JMIR Ment Health ; 7(7): e19246, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32484783

RESUMO

During the coronavirus disease (COVID-19) crisis, digital technologies have become a major route for accessing remote care. Therefore, the need to ensure that these tools are safe and effective has never been greater. We raise five calls to action to ensure the safety, availability, and long-term sustainability of these technologies: (1) due diligence: remove harmful health apps from app stores; (2) data insights: use relevant health data insights from high-quality digital tools to inform the greater response to COVID-19; (3) freely available resources: make high-quality digital health tools available without charge, where possible, and for as long as possible, especially to those who are most vulnerable; (4) digital transitioning: transform conventional offline mental health services to make them digitally available; and (5) population self-management: encourage governments and insurers to work with developers to look at how digital health management could be subsidized or funded. We believe this should be carried out at the population level, rather than at a prescription level.

11.
Rev. panam. salud pública ; 48: e13, 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1536672

RESUMO

resumen está disponible en el texto completo


ABSTRACT The CONSORT 2010 statement provides minimum guidelines for reporting randomized trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.


RESUMO A declaração CONSORT 2010 apresenta diretrizes mínimas para relatórios de ensaios clínicos randomizados. Seu uso generalizado tem sido fundamental para garantir a transparência na avaliação de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence) é uma nova diretriz para relatórios de ensaios clínicos que avaliam intervenções com um componente de IA. Ela foi desenvolvida em paralelo à sua declaração complementar para protocolos de ensaios clínicos, a SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 29 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão CONSORT-AI inclui 14 itens novos que, devido à sua importância para as intervenções de IA, devem ser informados rotineiramente juntamente com os itens básicos da CONSORT 2010. A CONSORT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA está inserida, considerações sobre o manuseio dos dados de entrada e saída da intervenção de IA, a interação humano-IA e uma análise dos casos de erro. A CONSORT-AI ajudará a promover a transparência e a integralidade nos relatórios de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente a qualidade do desenho do ensaio clínico e o risco de viés nos resultados relatados.

12.
Rev. panam. salud pública ; 48: e12, 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1536674

RESUMO

resumen está disponible en el texto completo


ABSTRACT The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


RESUMO A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

13.
Rev. panam. salud pública ; 47: e149, 2023. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1536665

RESUMO

resumen está disponible en el texto completo


ABSTRACT The SPIRIT 2013 statement aims to improve the completeness of clinical trial protocol reporting by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trial protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 26 candidate items, which were consulted upon by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items that were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations for the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial.


RESUMO A declaração SPIRIT 2013 tem como objetivo melhorar a integralidade dos relatórios dos protocolos de ensaios clínicos, fornecendo recomendações baseadas em evidências para o conjunto mínimo de itens que devem ser abordados. Essas orientações têm sido fundamentais para promover uma avaliação transparente de novas intervenções. Recentemente, tem-se reconhecido cada vez mais que intervenções que incluem inteligência artificial (IA) precisam ser submetidas a uma avaliação rigorosa e prospectiva para demonstrar seus impactos sobre os resultados de saúde. A extensão SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials - Artificial Intelligence) é uma nova diretriz de relatório para protocolos de ensaios clínicos que avaliam intervenções com um componente de IA. Essa diretriz foi desenvolvida em paralelo à sua declaração complementar para relatórios de ensaios clínicos, CONSORT-AI (Consolidated Standards of Reporting Trials - Artificial Intelligence). Ambas as diretrizes foram desenvolvidas por meio de um processo de consenso em etapas que incluiu revisão da literatura e consultas a especialistas para gerar 26 itens candidatos. Foram feitas consultas sobre esses itens a um grupo internacional composto por 103 interessados diretos, que participaram de uma pesquisa Delphi em duas etapas. Chegou-se a um acordo sobre os itens em uma reunião de consenso que incluiu 31 interessados diretos, e os itens foram refinados por meio de uma lista de verificação piloto que envolveu 34 participantes. A extensão SPIRIT-AI inclui 15 itens novos que foram considerados suficientemente importantes para os protocolos de ensaios clínicos com intervenções que utilizam IA. Esses itens novos devem constar dos relatórios de rotina, juntamente com os itens básicos da SPIRIT 2013. A SPIRIT-AI preconiza que os pesquisadores descrevam claramente a intervenção de IA, incluindo instruções e as habilidades necessárias para seu uso, o contexto no qual a intervenção de IA será integrada, considerações sobre o manuseio dos dados de entrada e saída, a interação humano-IA e a análise de casos de erro. A SPIRIT-AI ajudará a promover a transparência e a integralidade nos protocolos de ensaios clínicos com intervenções que utilizam IA. Seu uso ajudará editores e revisores, bem como leitores em geral, a entender, interpretar e avaliar criticamente o delineamento e o risco de viés de um futuro estudo clínico.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA