Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Discov ; 14(4): 600-604, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571414

RESUMO

Rapid advances in technology and therapeutics, along with better methods to discern who is at risk for cancer by genetic testing and other means, has enabled the development of cancer interception. Targeted therapies and "immuno-interception" may eliminate premalignant lesions and require clinical trial and treatment paradigms altogether distinct from current approaches.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Testes Genéticos
2.
Cancer Immunol Res ; 12(5): 544-558, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381401

RESUMO

Tumor molecular data sets are becoming increasingly complex, making it nearly impossible for humans alone to effectively analyze them. Here, we demonstrate the power of using machine learning (ML) to analyze a single-cell, spatial, and highly multiplexed proteomic data set from human pancreatic cancer and reveal underlying biological mechanisms that may contribute to clinical outcomes. We designed a multiplex immunohistochemistry antibody panel to compare T-cell functionality and spatial localization in resected tumors from treatment-naïve patients with localized pancreatic ductal adenocarcinoma (PDAC) with resected tumors from a second cohort of patients treated with neoadjuvant agonistic CD40 (anti-CD40) monoclonal antibody therapy. In total, nearly 2.5 million cells from 306 tissue regions collected from 29 patients across both cohorts were assayed, and over 1,000 tumor microenvironment (TME) features were quantified. We then trained ML models to accurately predict anti-CD40 treatment status and disease-free survival (DFS) following anti-CD40 therapy based on TME features. Through downstream interpretation of the ML models' predictions, we found anti-CD40 therapy reduced canonical aspects of T-cell exhaustion within the TME, as compared with treatment-naïve TMEs. Using automated clustering approaches, we found improved DFS following anti-CD40 therapy correlated with an increased presence of CD44+CD4+ Th1 cells located specifically within cellular neighborhoods characterized by increased T-cell proliferation, antigen experience, and cytotoxicity in immune aggregates. Overall, our results demonstrate the utility of ML in molecular cancer immunology applications, highlight the impact of anti-CD40 therapy on T cells within the TME, and identify potential candidate biomarkers of DFS for anti-CD40-treated patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Imunoterapia , Aprendizado de Máquina , Terapia Neoadjuvante , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD40/metabolismo , Resultado do Tratamento , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino
3.
Nat Commun ; 15(1): 1532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378697

RESUMO

Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Imunoterapia , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral
4.
Nat Commun ; 15(1): 5763, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982051

RESUMO

While high circulating tumor DNA (ctDNA) levels are associated with poor survival for multiple cancers, variant-specific differences in the association of ctDNA levels and survival have not been examined. Here we investigate KRAS ctDNA (ctKRAS) variant-specific associations with overall and progression-free survival (OS/PFS) in first-line metastatic pancreatic ductal adenocarcinoma (mPDAC) for patients receiving chemoimmunotherapy ("PRINCE", NCT03214250), and an independent cohort receiving standard of care (SOC) chemotherapy. For PRINCE, higher baseline plasma levels are associated with worse OS for ctKRAS G12D (log-rank p = 0.0010) but not G12V (p = 0.7101), even with adjustment for clinical covariates. Early, on-therapy clearance of G12D (p = 0.0002), but not G12V (p = 0.4058), strongly associates with OS for PRINCE. Similar results are obtained for the SOC cohort, and for PFS in both cohorts. These results suggest ctKRAS G12D but not G12V as a promising prognostic biomarker for mPDAC and that G12D clearance could also serve as an early biomarker of response.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , DNA Tumoral Circulante , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Feminino , Masculino , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mutação , Intervalo Livre de Progressão , Metástase Neoplásica
5.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105998

RESUMO

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA