Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38123508

RESUMO

SUMMARY: We present Coracle, an artificial intelligence (AI) framework that can identify associations between bacterial communities and continuous variables. Coracle uses an ensemble approach of prominent feature selection methods and machine learning (ML) models to identify features, i.e. bacteria, associated with a continuous variable, e.g. host thermal tolerance. The results are aggregated into a score that incorporates the performances of the different ML models and the respective feature importance, while also considering the robustness of feature selection. Additionally, regression coefficients provide first insights into the direction of the association. We show the utility of Coracle by analyzing associations between bacterial composition data (i.e. 16S rRNA Amplicon Sequence Variants, ASVs) and coral thermal tolerance (i.e. standardized short-term heat stress-derived diagnostics). This analysis identified high-scoring bacterial taxa that were previously found associated with coral thermal tolerance. Coracle scales with feature number and performs well with hundreds to thousands of features, corresponding to the typical size of current datasets. Coracle performs best if run at a higher taxonomic level first (e.g. order or family) to identify groups of interest that can subsequently be run at the ASV level. AVAILABILITY AND IMPLEMENTATION: Coracle can be accessed via a dedicated web server that allows free and simple access: http://www.micportal.org/coracle/index. The underlying code is open-source and available via GitHub https://github.com/SebastianStaab/coracle.git.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , RNA Ribossômico 16S/genética , Bactérias/genética
2.
Ann Rev Mar Sci ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116436

RESUMO

The Earth's oceans have absorbed more than 90% of the excess, climate change-induced atmospheric heat. The resulting rise in oceanic temperatures affects all species and can lead to the collapse of marine ecosystems, including coral reefs. Here, we review the range of methods used to measure thermal stress impacts on reef-building corals, highlighting current standardization practices and necessary refinements to fast-track discoveries and improve interstudy comparisons. We also present technological developments that will undoubtedly enhance our ability to record and analyze standardized data. Although we use corals as an example, the methods described are widely employed in marine sciences, and our recommendations therefore apply to all species and ecosystems. Enhancing collaborative data collection efforts, implementing field-wide standardized protocols, and ensuring data availability through dedicated, openly accessible databases will enable large-scale analysis and monitoring of ecosystem changes, improving our predictive capacities and informing active intervention to mitigate climate change effects on marine life.

3.
Nat Rev Microbiol ; 22(8): 460-475, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438489

RESUMO

Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.


Assuntos
Antozoários , Bactérias , Mudança Climática , Microbiota , Simbiose , Antozoários/microbiologia , Animais , Microbiota/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Recifes de Corais
4.
Commun Biol ; 7(1): 434, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594357

RESUMO

Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.


Assuntos
Antozoários , Bacillus , Microbiota , Probióticos , Vibrio , Animais , Antozoários/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA