Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(5): 942-957, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880654

RESUMO

Extensive skin damage requires specialized therapy that stimulates regeneration processes without scarring. The possibility of using combination of a collagen gel application as a wound dressing and fibroblast attractant with verteporfin as an antifibrotic agent was examined in vivo and in vitro. In vitro effects of verteporfin on viability and myofibroblast markers expression were evaluated using fibroblasts isolated from human scar tissue. In vivo the collagen gel and verteporfin (individually and in combination) were applied into the wound to investigate scarring during skin regeneration: deviations in skin layer thickness, collagen synthesis, and extracellular matrix fibers were characterized. The results indicate that verteporfin reduces fibrotic phenotype by suppressing expression of the contractile protein Sm22α without inducing cell death. However, administration of verteporfin in combination with the collagen gel disrupts its ability to direct wound healing in a scarless manner, which may be related to incompatibility of the mechanisms by which collagen and verteporfin control regeneration.


Assuntos
Colágeno , Fibroblastos , Verteporfina , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Humanos , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Animais , Cicatrização/efeitos dos fármacos , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Células Cultivadas , Alicerces Teciduais/química , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Cicatriz/metabolismo , Masculino , Fibrose , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo
2.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175444

RESUMO

Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.


Assuntos
Contenção de Riscos Biológicos , Telomerase , Linhagem Celular , Diferenciação Celular , Proliferação de Células , Telomerase/metabolismo
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982676

RESUMO

Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.


Assuntos
Células Epiteliais , Queratinas , Queratinas/genética , Queratinas/metabolismo , Epitélio/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto/metabolismo , Expressão Gênica
4.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628950

RESUMO

Most of the knowledge about human skin homeostasis, development, wound healing, and diseases has been accumulated from human skin biopsy analysis by transferring from animal models and using different culture systems. Human-to-mouse xenografting is one of the fundamental approaches that allows the skin to be studied in vivo and evaluate the ongoing physiological processes in real time. Humanized animals permit the actual techniques for tracing cell fate, clonal analysis, genetic modifications, and drug discovery that could never be employed in humans. This review recapitulates the novel facts about mouse skin self-renewing, regeneration, and pathology, raises issues regarding the gaps in our understanding of the same options in human skin, and postulates the challenges for human skin xenografting.


Assuntos
Pele , Cicatrização , Humanos , Animais , Camundongos , Transplante Heterólogo , Xenoenxertos , Biópsia
5.
Exp Cell Res ; 397(2): 112358, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160998

RESUMO

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.


Assuntos
Diferenciação Celular , Corpos Embrioides/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Meiose , Células Cultivadas , Corpos Embrioides/metabolismo , Feminino , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA-Seq
6.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829987

RESUMO

The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.


Assuntos
Actomiosina/genética , Pulmão/crescimento & desenvolvimento , Organogênese/genética , Alvéolos Pulmonares/crescimento & desenvolvimento , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Linhagem da Célula/genética , Citoesqueleto/genética , Enfisema/genética , Enfisema/patologia , Gases/metabolismo , Humanos , Pulmão/patologia , Mesoderma/citologia , Mesoderma/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Tretinoína/metabolismo
7.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830328

RESUMO

Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.


Assuntos
Alarminas/genética , Epiderme/metabolismo , Epidermólise Bolhosa Simples/genética , Queratina-14/genética , Queratina-5/genética , Queratinócitos/metabolismo , Alarminas/metabolismo , Estresse do Retículo Endoplasmático/genética , Epiderme/patologia , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Simples/patologia , Regulação da Expressão Gênica , Humanos , Inflamação , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Filamentos Intermediários/ultraestrutura , Queratina-14/metabolismo , Queratina-5/metabolismo , Queratinócitos/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916959

RESUMO

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7). The immortalized keratinocytes retained normal stratification in 3D skin equivalents. The comparison of secreted protein patterns from immortalized RDEB and healthy keratinocytes revealed the differences in the contents of the extracellular matrix that were earlier observed specifically for RDEB. We demonstrated the possibility to reverse the genotype of immortalized cells to the state closer to the progenitors by the Cre-dependent hTERT switch off. Increased ß-galactosidase activity and reduced proliferation of fibroblasts were shown after splitting out of transgenes. We anticipate our cell lines to be tractable models for studying RDEB from the level of single-cell changes to the evaluation of 3D skin equivalents. Our approach permits the creation of standardized and expandable models of RDEB that can be compared with the models based on primary cell cultures.


Assuntos
Fibroblastos/metabolismo , Recombinação Homóloga , Integrases/metabolismo , Queratinócitos/metabolismo , Telomerase/genética , Transgenes , Adolescente , Adulto , Biomarcadores , Linhagem Celular Transformada , Proliferação de Células , Senescência Celular/genética , Criança , Epidermólise Bolhosa Distrófica/etiologia , Epidermólise Bolhosa Distrófica/metabolismo , Feminino , Fibroblastos/patologia , Imunofluorescência , Técnicas de Silenciamento de Genes , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Cultura Primária de Células , Proteômica/métodos , Telomerase/metabolismo , Adulto Jovem
9.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670258

RESUMO

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a debilitating disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Mutations in the COL7A1 gene induce multiple abnormalities, including chronic inflammation and profibrotic changes in the skin. However, the correlations between the specific mutations in COL7A1 and their phenotypic output remain largely unexplored. The mutations in the COL7A1 gene, described here, were found in the DEB register. Among them, two homozygous mutations and two cases of compound heterozygous mutations were identified. We created the panel of primary patient-specific RDEB fibroblast lines (FEB) and compared it with control fibroblasts from healthy donors (FHC). The set of morphological features and the contraction capacity of the cells distinguished FEB from FHC. We also report the relationships between the mutations and several phenotypic traits of the FEB. Based on the analysis of the available RNA-seq data of RDEB fibroblasts, we performed an RT-qPCR gene expression analysis of our cell lines, confirming the differential status of multiple genes while uncovering the new ones. We anticipate that our panels of cell lines will be useful not only for studying RDEB signatures but also for investigating the overall mechanisms involved in disease progression.


Assuntos
Colágeno Tipo VII , Derme , Epidermólise Bolhosa Distrófica , Fibroblastos , Regulação da Expressão Gênica , Homozigoto , Mutação , Adolescente , Adulto , Criança , Colágeno Tipo VII/biossíntese , Colágeno Tipo VII/genética , Derme/metabolismo , Derme/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade
10.
Am J Med Genet A ; 176(11): 2395-2403, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30244536

RESUMO

The application of array-based comparative genomic hybridization and next-generation sequencing has identified many chromosomal microdeletions and microduplications in patients with different pathological phenotypes. Different copy number variations are described within the short arm of chromosome 18 in patients with skin diseases. In particular, full or partial monosomy 18p has also been associated with keratosis pilaris. Here, for the first time, we report a young male patient with intellectual disability, diabetes mellitus (type I), and keratosis pilaris, who exhibited a de novo 45-kb microduplication of exons 4-22 of LAMA1, located at 18p11.31, and a 432-kb 18p11.32 microduplication of paternal origin containing the genes METTL4, NDC80, and CBX3P2 and exons 1-15 of the SMCHD1 gene. The microduplication of LAMA1 was identified in skin fibroblasts but not in lymphocytes, whereas the larger microduplication was present in both tissues. We propose LAMA1 as a novel candidate gene for keratosis pilaris. Although inherited from a healthy father, the 18p11.32 microduplication, which included relevant genes, could also contribute to phenotype manifestation.


Assuntos
Anormalidades Múltiplas/genética , Duplicação Cromossômica/genética , Doença de Darier/complicações , Doença de Darier/genética , Sobrancelhas/anormalidades , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Laminina/genética , Mosaicismo , Adolescente , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Pele/patologia
11.
Animals (Basel) ; 13(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136814

RESUMO

Biodiversity collections are important vehicles for protecting endangered wildlife in situations of adverse anthropogenic influence. In Russia, there are currently a number of institution- and museum-based biological collections, but there are no nation-wide centres of biodiversity collections. In this paper, we report on the results of our survey of 324 bioconservation, big-data, and ecology specialists from different regions of Russia in regard to the necessity to create several large national biodiversity centres of wildlife protection. The survey revealed specific goals that have to be fulfilled during the development of these centres for the protection and restoration of endangered wildlife species. The top three problems/tasks (topics) are the following: (1) the necessity to create large national centres for different types of specimens; (2) the full sequencing and creation of different "omic" (genomic, proteomic, transcriptomic, etc.) databases; (3) full digitisation of a biodiversity collection/centre. These goals may constitute a guideline for the future of biodiversity collections in Russia that would be targeted at protecting and restoring endangered species. With the due network service level, the translation of the website into English, and permission from the regulator (Ministry of Science and Higher Education of Russian Federation), it can also become an international project.

12.
Biomolecules ; 12(6)2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740935

RESUMO

Great advances in type 1 diabetes (T1D) and type 2 diabetes (T2D) treatment have been made to this day. However, modern diabetes therapy based on insulin injections and cadaveric islets transplantation has many disadvantages. That is why researchers are developing new methods to regenerate the pancreatic hormone-producing cells in vitro. The most promising approach is the generation of stem cell-derived beta cells that could provide an unlimited source of insulin-secreting cells. Recent studies provide methods to produce beta-like cell clusters that display glucose-stimulated insulin secretion-one of the key characteristics of the beta cell. However, in comparison with native beta cells, stem cell-derived beta cells do not undergo full functional maturation. In this paper we review the development and current state of various protocols, consider advantages, and propose ways to improve them. We examine molecular pathways, epigenetic modifications, intracellular components, and the microenvironment as a possible leverage to promote beta cell functional maturation. A possibility to create islet organoids from stem cell-derived components, as well as their encapsulation and further transplantation, is also examined. We try to combine modern research on beta cells and their crosstalk to create a holistic overview of developing insulin-secreting systems.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células-Tronco/metabolismo
13.
Histochem Cell Biol ; 133(5): 567-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20336308

RESUMO

The ability of dermal papilla (DP) cells to induce hair growth was reported in many studies. However, early stages of hair follicle development and signals that govern this process are poorly understood. Therefore, an in vitro model may be a convenient system to study epithelial-mesenchymal interactions and early stages of epidermal morphogenesis, especially in humans. To investigate the role of DP cells in epidermal morphogenesis we modified the method of isolation of DP cells from hair follicle of human scalp and developed the three-dimensional model of epidermal morphogenesis. Isolated DP cells were able to differentiate in adipogenic and osteogenic directions and retained activity of alkaline phosphatase (AP) for seven passages in culture. DP cells were able to induce tubule-like structures in three-dimensional model in vitro and to reorganize collagen matrix. Prolonged cultivation of DP cells has been a big problem because of the loss of hair follicle-inducing ability and growth activity after several passages. To solve this problem we immortalized DP cells by the transfection of the human telomerase reverse transcriptase cDNA (hTERT). Immortalized DP-hTERT cells retained AP activity and demonstrated low ability to osteogenic differentiation. The conditioned medium collected from actively proliferated cells as well as DP-hTERT cells themselves were capable to induce tubulogenesis after prolonged keratinocyte cultivation.


Assuntos
Derme/citologia , Folículo Piloso/citologia , Folículo Piloso/embriologia , Queratinócitos/citologia , Morfogênese/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Fosfatase Alcalina/metabolismo , Comunicação Celular/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Linhagem Celular Transformada , Proliferação de Células , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Queratina-10/metabolismo , Queratina-14/metabolismo , Queratina-19/metabolismo , Osteoblastos/metabolismo , Osteonectina/metabolismo , Osteopontina/metabolismo , Telomerase/genética , Transfecção
14.
Front Cell Dev Biol ; 8: 581697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240882

RESUMO

There are many studies devoted to the role of hair follicle stem cells in wound healing as well as in follicle self-restoration. At the same time, the influence of the inflammatory cells on the hair follicle cycling in both injured and intact skin is well established. Immune cells of all wound healing stages, including macrophages, γδT cells, and T regs, may activate epidermal stem cells to provide re-epithelization and wound-induced hair follicle neogenesis. In addition to the ability of epidermal cells to maintain epidermal morphogenesis through differentiation program, they can undergo de-differentiation and acquire stem features under the influence of inflammatory milieu. Simultaneously, a stem cell compartment may undergo re-programming to adopt another fate. The proportion of skin resident immune cells and wound-attracted inflammatory cells (e.g., neutrophils and macrophages) in wound-induced hair follicle anagen and plucking-induced anagen is still under discussion to date. Experimental data suggesting the role of reactive oxygen species and prostaglandins, which are uncharacteristic of the intact skin, in the hair follicle cycling indicates the role of neutrophils in injury-induced conditions. In this review, we discuss some of the hair follicles stem cell activities, such as wound-induced hair follicle neogenesis, hair follicle cycling, and re-epithelization, through the prism of inflammation. The plasticity of epidermal stem cells under the influence of inflammatory microenvironment is considered. The relationship between inflammation, scarring, and follicle neogenesis as an indicator of complete wound healing is also highlighted. Taking into consideration the available data, we also conclude that there may exist a presumptive interlink between the stem cell activation, inflammation and the components of programmed cell death pathways.

15.
Methods Mol Biol ; 2154: 153-163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32314215

RESUMO

Modeling organoids with hair follicle germ-like properties provides an opportunity for developing strategies for alopecia drug discovery and replacement therapy, as well as investigating the molecular mechanisms underlying human hair follicle regeneration in vitro. Hair follicle germ reconstruction in vitro is based on dermal papilla hair-inducing abilities and the plasticity of skin epidermal keratinocytes. The current protocol describes a highly efficient approach suitable for adult human skin cell applications. This method allows to obtain hair follicle germs using tissues from one donor. Isolated and cultured for 2 weeks, adult hair follicle dermal papilla cells and skin epidermal keratinocytes self-organize in hanging drop cultures generating organoids that exhibit the features of folliculogenesis onset.


Assuntos
Folículo Piloso/citologia , Pele/citologia , Células-Tronco/citologia , Técnicas de Cultura de Células , Separação Celular , Derme/citologia , Folículo Piloso/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Organoides , Cultura Primária de Células , Pele/metabolismo , Esferoides Celulares , Células-Tronco/metabolismo
16.
Cells ; 9(9)2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872587

RESUMO

Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.


Assuntos
Células Epiteliais/metabolismo , Neoplasias/genética , Transglutaminases/metabolismo , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Camundongos
17.
Plast Reconstr Surg Glob Open ; 8(2): e2610, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32309071

RESUMO

BACKGROUND: The regeneration of the peripheral nerves after injuries is still a challenging fundamental and clinical problem. The cell therapy and nerve guide conduit construction are promising modern approaches. Nowadays, different sources of cells for transplantation are available. But it is little known about the interaction between fetal central nervous system cells and peripheral nerve tissue. In this study, we analyzed the development of the fetal neocortex and spinal cord solid grafts injected into the gelatin hydrogel conduits and their effects on sciatic nerve regeneration after cut injury. METHODS: Frontal neocortex tissue was obtained from E19.5 and spinal cord tissue was obtained from E14.5 fetuses harvested from transgenic EGFP mice. The grafts were injected into the hydrogel conduits which were connected to the nerve stumps after cut injury. The recovery of motor function was estimated with walking track analysis at 2, 5, and 8 weeks after surgery. Then immunohistochemical study was performed. RESULTS: The histological examination showed that only fetal neocortex solid graft cells had survived after implantation. Immunostaining revealed that some of the transplanted cells expressed neural markers such as neurofilament protein and NeuN. But the cells mostly differentiated in glial lineage, which was confirmed with immunostaining for GFAP and S100ß. The walking-track analysis has shown that 8 weeks after surgery bioengineered conduit differed significantly from the control. CONCLUSIONS: We revealed that the hydrogel conduit is suitable for nerve re-growth and that the fetal neocortex grafted cells can survive and differentiate. Bioengineered conduit can stimulate functional recovery after the nerve injury.

18.
Cells ; 8(6)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216669

RESUMO

There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.


Assuntos
Derme/metabolismo , Derme/patologia , Cicatrização/fisiologia , Animais , Cicatriz/metabolismo , Cicatriz/patologia , Derme/fisiologia , Matriz Extracelular , Fibroblastos/fisiologia , Folículo Piloso/fisiologia , Humanos , Queloide/patologia , Miofibroblastos/fisiologia , Regeneração/fisiologia , Pele/metabolismo , Pele/patologia , Fenômenos Fisiológicos da Pele , Pele Artificial
19.
Methods Appl Fluoresc ; 7(4): 044002, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31412329

RESUMO

Induced pluripotent stem cells (iPSC) are a promising tool for personalized cell therapy, in particular, in the field of dermatology. Metabolic plasticity of iPSC are not completely understood due to the fact that iPSC have a mixed mitochondrial phenotype, which still resembles that of somatic cells. In this study we investigated the metabolic changes in iPSC undergoing differentiation in two directions, dermal and epidermal, using two-photon fluorescence microscopy combined with FLIM. Directed differentiation of iPSC into dermal fibroblasts and keratinocyte progenitor cells was induced. Cellular metabolism was examined on the basis of the fluorescence of the metabolic cofactors NAD(P)H and FAD. The optical redox ratio (FAD/NAD(P)H) and the fluorescence lifetimes of NAD(P)H and FAD were traced using two-photon fluorescence microscopy combined with FLIM. Evaluation of the intracellular pH was carried out with the fluorescent pH sensor SypHer-2 and fluorescence microscopy. In this study, evaluation of the metabolic status of iPSC during dermal and epidermal differentiation was accomplished for the first time with the use of optical metabolic imaging. Based on the data on the FAD/NAD(P)H redox ratio and on the fluorescence lifetimes of protein-bound form of NAD(P)H and closed form of FAD, we registered a metabolic shift toward a more oxidative status in the process of iPSC differentiation into dermal fibroblasts and keratinocyte progenitor cells. Biosynthetic processes occurring in dermal fibroblasts associated with the synthesis of fibronectin and versican, that stimulate increased energy metabolism and lower the intracellular pH. No intracellular pH shift is observed in the culture of keratinocyte progenitor cells, which reflects the incomplete process of differentiation in this type of cells. Presented results provide the basis for further understanding the metabolic features of iPSC during differentiation process, which is essential for developing new treatment strategies in cell therapy and tissue engineering.


Assuntos
Diferenciação Celular , Derme/citologia , Epiderme/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Espaço Intracelular/química , Calibragem , Humanos , Concentração de Íons de Hidrogênio
20.
Histol Histopathol ; 33(11): 1189-1199, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29845594

RESUMO

Despite recent advances in bioengineered therapies, wound healing remains a serious clinical problem. In acute full-thickness wounds, it is desirable to replace both the damaged dermis and epidermis in a single procedure. This approach requires appropriate properties of tissue-engineered dressings to support simultaneous regenerative processes in the dermis and epidermis while they are temporally separated in the natural wound healing process. In this study, a collagen-based scaffold inhabited by skin cells was employed. Its ability to stimulate the skin repair of full-thickness excisional splinting wounds in a murine model was evaluated in comparison with that of acellular collagen and commercially available gelatin porous sponge Spongostan®. The study showed that cell-based skin equivalent promoted the immediate filling of the wound bed and provided simultaneous reorganization of the dermal component into highly vascularized granulation-like tissue and rapid epithelialization, thus improving the quality of healing. Inflammation was delayed and less pronounced. In contrast, acellular collagen and especially Spongostan® failed to demonstrate similar results. The porous structure of Spongostan® prevented effective long-term epithelialization and impeded the formation of an adequate connective tissue at the wound bed.


Assuntos
Curativos Biológicos , Colágeno/uso terapêutico , Alicerces Teciduais , Cicatrização , Animais , Células Cultivadas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA