Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(22): 9036-41, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23650354

RESUMO

Heroin addiction, a chronic relapsing disorder characterized by excessive drug taking and seeking, requires constant psychotherapeutic and pharmacotherapeutic interventions to minimize the potential for further abuse. Vaccine strategies against many drugs of abuse are being developed that generate antibodies that bind drug in the bloodstream, preventing entry into the brain and nullifying psychoactivity. However, this strategy is complicated by heroin's rapid metabolism to 6-acetylmorphine and morphine. We recently developed a "dynamic" vaccine that creates antibodies against heroin and its psychoactive metabolites by presenting multihaptenic structures to the immune system that match heroin's metabolism. The current study presents evidence of effective and continuous sequestration of brain-permeable constituents of heroin in the bloodstream following vaccination. The result is efficient blockade of heroin activity in treated rats, preventing various features of drugs of abuse: heroin reward, drug-induced reinstatement of drug seeking, and reescalation of compulsive heroin self-administration following abstinence in dependent rats. The dynamic vaccine shows the capability to significantly devalue the reinforcing and motivating properties of heroin, even in subjects with a history of dependence. In addition, targeting a less brain-permeable downstream metabolite, morphine, is insufficient to prevent heroin-induced activity in these models, suggesting that heroin and 6-acetylmorphine are critical players in heroin's psychoactivity. Because the heroin vaccine does not target opioid receptors or common opioid pharmacotherapeutics, it can be used in conjunction with available treatment options. Thus, our vaccine represents a promising adjunct therapy for heroin addiction, providing continuous heroin antagonism, requiring minimal medical monitoring and patient compliance.


Assuntos
Anticorpos/imunologia , Dependência de Heroína/prevenção & controle , Heroína/imunologia , Vacinas/imunologia , Animais , Cromatografia Líquida , Heroína/sangue , Heroína/metabolismo , Masculino , Morfina/imunologia , Morfina/metabolismo , Derivados da Morfina/sangue , Derivados da Morfina/imunologia , Derivados da Morfina/metabolismo , Motivação , Ratos , Ratos Wistar , Prevenção Secundária , Autoadministração , Espectrometria de Massas em Tandem
2.
J Pharmacol Exp Ther ; 331(2): 539-46, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19684255

RESUMO

Systemically or centrally administered agmatine (decarboxylated arginine) prevents, moderates, or reverses opioid-induced tolerance and self-administration, inflammatory and neuropathic pain, and sequelae associated with ischemia and spinal cord injury in rodents. These behavioral models invoke the N-methyl-D-aspartate (NMDA) receptor/nitric-oxide synthase cascade. Agmatine (AG) antagonizes the NMDA receptor and inhibits nitric-oxide synthase in vitro and in vivo, which may explain its effect in models of neural plasticity. Agmatine has been detected biochemically and immunohistochemically in the central nervous system. Consequently, it is conceivable that agmatine operates in an anti-glutamatergic manner in vivo; the role of endogenous agmatine in the central nervous system remains minimally defined. The current study used an immunoneutralization strategy to evaluate the effect of sequestration of endogenous agmatine in acute opioid analgesic tolerance in mice. First, intrathecal pretreatment with an anti-AG IgG (but not normal IgG) reversed an established pharmacological effect of intrathecal agmatine: antagonism of NMDA-evoked behavior. This result justified the use of anti-AG IgG to sequester endogenous agmatine in vivo. Second, intrathecal pretreatment with the anti-AG IgG sensitized mice to induction of acute spinal tolerance of two micro-opioid receptor-selective agonists, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin and endomorphin-2. A lower dose of either agonist that, under normal conditions, produces moderate or no tolerance was tolerance-inducing after intrathecal pretreatment of anti-AG IgG (but not normal IgG). The effect of the anti-AG IgG lasted for at least 24 h in both NMDA-evoked behavior and the acute opioid tolerance. These results suggest that endogenous spinal agmatine may moderate glutamate-dependent neuroplasticity.


Assuntos
Agmatina/antagonistas & inibidores , Agmatina/farmacologia , Anticorpos Bloqueadores/farmacologia , Receptores Opioides mu/efeitos dos fármacos , Agmatina/imunologia , Analgésicos Opioides/farmacologia , Animais , Arginina/farmacologia , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Agonistas de Aminoácidos Excitatórios , Cobaias , Imunoglobulina G/biossíntese , Imunoglobulina G/farmacologia , Imuno-Histoquímica , Injeções Espinhais , Masculino , Camundongos , N-Metilaspartato , Oligopeptídeos/farmacologia , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
3.
Eur J Pharmacol ; 587(1-3): 135-40, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18495108

RESUMO

The decarboxylation product of arginine, agmatine, has effectively reduced or prevented opioid-induced tolerance and dependence when given either systemically (intraperitoneally or subcutaneously) or centrally (intrathecally or intracerebroventricularly). Systemically administered agmatine also reduces the escalation phase of intravenous fentanyl self-administration in rats. The present study assessed whether centrally (intracerebroventricular, i.c.v.) delivered agmatine could prevent the development of fentanyl self-administration in mice. Mice were trained to respond under a fixed-ratio 1 (FR1) schedule for either fentanyl (0.7 microg/70 microl, p.o.) or food reinforcement. Agmatine (10 nmol/5 microl), injected i.c.v. 12-14 h before the first session and every other evening (12-14 h before session) for 2 weeks, completely attenuated oral fentanyl self-administration (but not food-maintained responding) compared to saline-injected controls. When agmatine was administered after fentanyl self-administration had been established (day 8) it had no attenuating effects on bar pressing. This dose of agmatine does not decrease locomotor activity as assessed by rotarod. The present findings significantly extend the previous observation that agmatine prevents opioid-maintained behavior to a chronic model of oral fentanyl self-administration as well as identifying a supraspinal site of action for agmatine inhibition of drug addiction.


Assuntos
Agmatina/uso terapêutico , Analgésicos Opioides , Fentanila , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Agmatina/administração & dosagem , Animais , Área Sob a Curva , Interpretação Estatística de Dados , Injeções Intraventriculares , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Equilíbrio Postural/efeitos dos fármacos , Esquema de Reforço , Autoadministração
4.
Neuropsychopharmacology ; 42(9): 1850-1859, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27917870

RESUMO

Opioid addiction, including addiction to heroin, has markedly increased in the past decade. The cost and pervasiveness of heroin addiction, including resistance to recovery from addiction, provide a compelling basis for developing novel therapeutic strategies. Deep brain stimulation may represent a viable alternative strategy for the treatment of intractable heroin addiction, particularly in individuals who are resistant to traditional therapies. Here we provide preclinical evidence of the therapeutic potential of high-frequency stimulation of the subthalamic nucleus (STN HFS) for heroin addiction. STN HFS prevented the re-escalation of heroin intake after abstinence in rats with extended access to heroin, an animal model of compulsive heroin taking. STN HFS inhibited key brain regions, including the substantia nigra, entopeduncular nucleus, and nucleus accumbens shell measured using brain mapping analyses of immediate-early gene expression and produced a robust silencing of STN neurons as measured using whole-cell recording ex vivo. These results warrant further investigation to examine the therapeutic effects that STN HFS may have on relapse in humans with heroin addiction.


Assuntos
Comportamento Compulsivo/fisiopatologia , Comportamento Compulsivo/terapia , Estimulação Encefálica Profunda , Dependência de Heroína/fisiopatologia , Dependência de Heroína/terapia , Núcleo Subtalâmico/fisiopatologia , Analgésicos Opioides/administração & dosagem , Animais , Modelos Animais de Doenças , Comportamento de Procura de Droga/fisiologia , Heroína/administração & dosagem , Masculino , Potenciais da Membrana/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Autoadministração , Técnicas de Cultura de Tecidos
5.
Behav Brain Res ; 167(2): 355-64, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16256210

RESUMO

The pro-inflammatory cytokine interleukin-1 (IL-1) has been implicated in both inflammatory processes and nociceptive neurotransmission. To further investigate the role of IL-1 in different pain states, gene-disrupted mice lacking both IL-1alpha and IL-1beta genes (IL-1alphabeta (-/-)) were characterized in inflammatory, neuropathic, and post-operative pain models. IL-1alphabeta (-/-) mice showed normal sensorimotor function as measured by the rotorod assay compared to control mice (BALB/c). Acute and persistent formalin-induced nocifensive behaviors were reduced by 20% in IL-1alphabeta (-/-) mice as compared to control mice. IL-1alphabeta (-/-) mice also showed reduced inflammatory thermal and mechanical hyperalgesia compared to controls following the intraplantar administration of carrageenan or complete Freund's adjuvant (CFA). The duration of inflammatory hyperalgesia was shortened in IL-1alphabeta (-/-) mice versus controls in the CFA model. In contrast, deletion of IL-1alphabeta did not change the extent or the duration of post-operative pain developing after skin incision of the hind paw. Finally, time to onset, duration, and magnitude of mechanical allodynia were reduced in two models of neuropathic pain, spinal nerve L5-L6 ligation and chronic constriction injury of the sciatic nerve, in IL-1alphabeta (-/-) mice versus controls. These results demonstrate that IL-1alphabeta modulates both the generation and the maintenance of inflammatory and chronic neuropathic pain and that IL-1 may modulate nociceptive sensitivity to a greater extent in conditions of chronic as compared to acute pain.


Assuntos
Hiperalgesia/fisiopatologia , Inflamação/fisiopatologia , Interleucina-1/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Neuropatia Ciática/fisiopatologia , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Hiperalgesia/genética , Inflamação/complicações , Interleucina-1/deficiência , Interleucina-1/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dor/etiologia , Dor Pós-Operatória/fisiopatologia , Distribuição Aleatória , Teste de Desempenho do Rota-Rod , Neuropatia Ciática/complicações
6.
Eur J Pharmacol ; 509(1): 43-8, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15713428

RESUMO

ABT-594 ((R)-5-(2-azetidinylmethoxy)-2-chloropyridine) represents a novel class of broad-spectrum analgesics whose primary mechanism of action is activation of the neuronal nicotinic acetylcholine receptors. The present study characterized the effects of ABT-594 in a rat chemotherapy-induced neuropathic pain model, where it attenuated mechanical allodynia with an ED50 = 40 nmol/kg (i.p.). This anti-allodynic effect was not blocked by systemic (i.p.) pretreatment with naloxone but was blocked completely with mecamylamine. Pretreatment with chlorisondamine (0.2-5 micromol/kg, i.p.) only partially blocked the effects of ABT-594 at the higher doses tested. In contrast, central (i.c.v.) pretreatment with chlorisondamine completely blocked ABT-594's anti-allodynic effect. Taken together, the data demonstrate that ABT-594 has a potent anti-allodynic effect in the rat vincristine model and that, in addition to its strong central site of action, ABT-594's effects are partially mediated by peripheral nicotinic acetylcholine receptors in this animal model of chemotherapy-induced neuropathic pain.


Assuntos
Analgesia/métodos , Azetidinas/farmacologia , Modelos Animais de Doenças , Agonistas Nicotínicos/farmacologia , Dor/induzido quimicamente , Piridinas/farmacologia , Acetilcolina/agonistas , Acetilcolina/farmacologia , Animais , Azetidinas/antagonistas & inibidores , Azetidinas/química , Clorisondamina/administração & dosagem , Clorisondamina/farmacocinética , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Humanos , Mecamilamina/administração & dosagem , Mecamilamina/farmacocinética , Naloxona/administração & dosagem , Agonistas Nicotínicos/química , Piridinas/antagonistas & inibidores , Piridinas/química , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Vincristina/administração & dosagem , Vincristina/efeitos adversos , Vincristina/farmacocinética
7.
Neuropsychopharmacology ; 40(2): 421-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25060491

RESUMO

The abuse of prescription opioids that are used for the treatment of chronic pain is a major public health concern, costing ∼$53.4 billion annually in lost wages, health-care costs, and criminal costs. Although opioids remain a first-line therapy for the treatment of severe chronic pain, practitioners remain cautious because of the potential for abuse and addiction. Opioids such as heroin are considered very rewarding and reinforcing, but direct and systematic comparisons of compulsive intake between commonly prescribed opioids and heroin in animal models have not yet been performed. In the present study, we evaluated the potential for compulsive-like drug seeking and taking, using intravenous self-administration of oxycodone, fentanyl, and buprenorphine in rats allowed long access sessions (12 h). We measured compulsive-like intake using an established escalation model and responding on a progressive ratio schedule of reinforcement. We compared the potential for compulsive-like self-administration of these prescription opioids and heroin, which has been previously established to induce increasing intake that models the transition to addiction in humans. We found that animals that self-administered oxycodone, fentanyl, or heroin, but not buprenorphine had similar profiles of escalation and increases in breakpoints. The use of extended access models of prescription opioid intake will help better understand the biological factors that underlie opioid dependence.


Assuntos
Analgésicos Opioides/administração & dosagem , Buprenorfina/administração & dosagem , Fentanila/administração & dosagem , Heroína/administração & dosagem , Transtornos Relacionados ao Uso de Opioides , Oxicodona/administração & dosagem , Animais , Comportamento de Procura de Droga , Masculino , Ratos Wistar , Autoadministração , Fatores de Tempo
8.
Pain ; 110(1-2): 56-63, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15275752

RESUMO

Chemotherapy-induced peripheral neuropathy is a common, dose-limiting side effect of cancer chemotherapeutic agents, including the vinca alkaloids such as vincristine. The resulting symptoms, which frequently include moderate to severe pain, can often be disabling. The current study utilized a vincristine-induced neuropathic pain animal model [Pain 93 (2001) 69], in which rats were surgically implanted with mini-osmotic pumps set to deliver vincristine sulfate (30 microg kg(-1)day(-1), i.v.), to examine the time course of progression of various pain modalities and to compare the dose-response effects of clinically utilized drugs on mechanical allodynia to further validate the relevance of this model to clinical pathology. Vincristine infusion resulted in significant cold allodynia after 1 week post-infusion, however mechanical and thermal nociception showed little to no effect. In contrast, marked mechanical allodynia occurred by 1 week of vincristine infusion and returned nearly to pre-infusion levels by the 4th week after infusion pump implantation. ED(50) values (micromol/kg, p.o.) were determined in the mechanical allodynia assay for lamotrigine (82), dextromethorphan (94), gabapentin (400), acetaminophen (1100) and carbamazepine (3600); however, aspirin and ibuprofen had no effects up to 300 and 1000 micromol/kg, respectively. Additionally, ED(50) values (micromol/kg, i.p.) were determined in the mechanical allodynia assay for clonidine (0.35) and morphine (0.62), but desipramine and celecoxib had no effects up to 66 and 260 micromol/kg, respectively. Findings from the current, preclinical study further validate this model as clinically relevant for chemotherapy-induced pain. The surprisingly good effects observed with acetaminophen warrant further investigation of its mechanism(s) of action in neuropathic pain.


Assuntos
Analgésicos/uso terapêutico , Modelos Animais de Doenças , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hiperestesia/tratamento farmacológico , Doenças do Sistema Nervoso/induzido quimicamente , Dor/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hiperestesia/fisiopatologia , Bombas de Infusão Implantáveis , Masculino , Doenças do Sistema Nervoso/tratamento farmacológico , Dor/induzido quimicamente , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Vincristina
9.
Eur J Pharmacol ; 506(2): 107-18, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15588730

RESUMO

Preclinical data, performed in a limited number of pain models, suggest that functional blockade of metabotropic glutamate (mGlu) receptors may be beneficial for pain management. In the present study, effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective mGlu5 receptor antagonist, were examined in a wide variety of rodent nociceptive and hypersensitivity models in order to fully characterize the potential analgesic profile of mGlu5 receptor blockade. Effects of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), as potent and selective as MPEP at mGlu5/mGlu1 receptors but more selective than MPEP at N-methyl-aspartate (NMDA) receptors, were also evaluated in selected nociceptive and side effect models. MPEP (3-30 mg/kg, i.p.) produced a dose-dependent reversal of thermal and mechanical hyperalgesia following complete Freund's adjuvant (CFA)-induced inflammatory hypersensitivity. Additionally, MPEP (3-30 mg/kg, i.p.) decreased thermal hyperalgesia observed in carrageenan-induced inflammatory hypersensitivity without affecting paw edema, abolished acetic acid-induced writhing activity in mice, and was shown to reduce mechanical allodynia and thermal hyperalgesia observed in a model of post-operative hypersensitivity and formalin-induced spontaneous pain. Furthermore, at 30 mg/kg, i.p., MPEP significantly attenuated mechanical allodynia observed in three neuropathic pain models, i.e. spinal nerve ligation, sciatic nerve constriction and vincristine-induced neuropathic pain. MTEP (3-30 mg/kg, i.p.) also potently reduced CFA-induced thermal hyperalgesia. However, at 100 mg/kg, i.p., MPEP and MTEP produced central nerve system (CNS) side effects as measured by rotarod performance and exploratory locomotor activity. These results suggest a role for mGlu5 receptors in multiple nociceptive modalities, though CNS side effects may be a limiting factor in developing mGlu5 receptor analgesic compounds.


Assuntos
Dor/fisiopatologia , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Ácido Acético , Animais , Carragenina , Sistema Nervoso Central/fisiologia , Constrição Patológica/patologia , Edema/induzido quimicamente , Formaldeído , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Dor/induzido quimicamente , Dor/psicologia , Medição da Dor/efeitos dos fármacos , Dor Pós-Operatória/patologia , Desempenho Psicomotor/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/fisiologia , Nervos Espinhais/patologia , Tiazóis/farmacologia , Vincristina/farmacologia
10.
Curr Top Behav Neurosci ; 20: 217-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25205326

RESUMO

Systemically and centrally delivered opioids have been comprehensively studied for their effects both in analgesic and addiction models for many decades, primarily in subjects with presumptive normal sensory thresholds. The introduction of disease-based models of persistent hypersensitivity enabled chronic evaluation of opioid analgesic pharmacology under the specific state of chronic pain. These studies have largely (but not uniformly) reported reduced opioid analgesic potency and efficacy under conditions of chronic pain. A comparatively limited set of studies has evaluated the impact of experimentally induced chronic pain on self-administration patterns of opioid and non-opioid analgesics. Similarly, these studies have primarily (but not exclusively) found that responding for opioids is reduced under conditions of chronic pain. Additionally, such experiments have also demonstrated that the condition of chronic pain evokes self-administration or conditioned place preference for non-opioid analgesics. The consensus is that the chronic pain alters responding for opioid and non-opioid analgesics in a manner seemingly related to their respective antiallodynic/antihyperalgesic properties under the specific state of chronic pain.

11.
Neuropharmacology ; 76 Pt B: 370-82, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23747571

RESUMO

Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.


Assuntos
Comportamento Impulsivo/complicações , Reforço Psicológico , Transtornos Relacionados ao Uso de Substâncias/complicações , Tonsila do Cerebelo/metabolismo , Animais , Hormônio Liberador da Corticotropina/metabolismo , Comportamento de Procura de Droga , Dinorfinas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo
12.
PLoS One ; 8(11): e79239, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260176

RESUMO

The development of opioid addiction in subjects with established chronic pain is an area that is poorly understood. It is critically important to clearly understand the neurobiology associated with propensity toward conversion to addiction under conditions of chronic pain. To pose the question whether the presence of chronic pain influences motivation to self-administer opioids for reward, we applied a combination of rodent models of chronic mechanical hyperalgesia and opioid self-administration. We studied fentanyl self-administration in mice under three conditions that induce chronic mechanical hyperalgesia: inflammation, peripheral nerve injury, and repeated chemotherapeutic injections. Responding for fentanyl was compared among these conditions and their respective standard controls (naïve condition, vehicle injection or sham surgery). Acquisition of fentanyl self-administration behavior was reduced or absent in all three conditions of chronic hyperalgesia relative to control mice with normal sensory thresholds. To control for potential impairment in ability to learn the lever-pressing behavior or perform the associated motor tasks, all three groups were evaluated for acquisition of food-maintained responding. In contrast to the opioid, chronic hyperalgesia did not interfere with the reinforcing effect of food. These studies indicate that the establishment of chronic hyperalgesia is associated with reduced or ablated motivation to seek opioid reward in mice.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dor Crônica , Fentanila/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/fisiopatologia , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Autoadministração
13.
Pain ; 125(1-2): 136-42, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16781071

RESUMO

Gabapentin and pregabalin have been demonstrated, both in animal pain models and clinically, to be effective analgesics particularly for the treatment of neuropathic pain. The precise mechanism of action for these two drugs is unknown, but they are generally believed to function via initially binding to the alpha2delta subunit of voltage-gated Ca2+ channels. In this study, we used a pharmacological approach to test the hypothesis whether high affinity interactions with the alpha2delta subunit alone could lead to attenuation of neuropathic pain in rats. The anti-allodynic effects of gabapentin and pregabalin, along with three other compounds--(L)-phenylglycine, m-chlorophenylglycine and 3-exo-aminobicyclo[2.2.1]heptane-2-exo-carboxylic acid (ABHCA)--discovered to be potent alpha2delta ligands, were tested in the rat spinal nerve ligation model of neuropathic pain. Gabapentin (Ki = 120 nM), pregabalin (180 nM) and (L)-phenylglycine (180 nM) were shown to be anti-allodynic, with respective ED50 values of 230, 90 and 80 micromol/kg (p.o.). (L)-Phenylglycine was as potent as pregabalin and equi-efficacious in reversing mechanical allodynia. In contrast, two ligands with comparable or superior alpha2delta binding affinities, m-chlorophenylglycine (Ki = 54 nM) and ABHCA (150 nM), exhibited no anti-allodynic effects at doses of 30-300 micromol/kg (p.o.), although these compounds achieved substantial brain levels. The data demonstrate that, at least in the rat spinal nerve ligation model of neuropathic pain, (L)-phenylglycine has an anti-allodynic effect, but two equally potent alpha2delta subunit ligands do not. These results suggest that additional mechanisms, besides alpha2delta interactions, may contribute to the effects of compounds like gabapentin, pregabalin and (L)-phenylglycine in neuropathic pain.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Glicina/análogos & derivados , Neuralgia/metabolismo , Neuralgia/prevenção & controle , Analgésicos/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/administração & dosagem , Canais de Cálcio Tipo L , Relação Dose-Resposta a Droga , Glicina/administração & dosagem , Hiperestesia/metabolismo , Hiperestesia/prevenção & controle , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA