Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36840150

RESUMO

We hypothesized that the nitrogen-fixing tree Acacia mangium could improve the growth and nitrogen nutrition of non-fixing tree species such as Eucalyptus. We measured the N-mineralization and respiration rates of soils sampled from plots covered with Acacia, Eucalyptus or native vegetation at two tropical sites (Itatinga in Brazil and Kissoko in the Congo) in the laboratory. We used a bioassay to assess N bioavailability to eucalypt seedlings grown with and without chemical fertilization for at least 6 months. At each site, Eucalyptus seedling growth and N bioavailability followed the same trends as the N-mineralization rates in soil samples. However, despite lower soil N-mineralization rates under Acacia in the Congo than in Brazil, Eucalyptus seedling growth and N bioavailability were much greater in the Congo, indicating that bioassays in pots are more accurate than N-mineralization rates when predicting the growth of eucalypt seedlings. Hence, in the Congo, planting Acacia mangium could be an attractive option to maintain the growth and N bioavailability of the non-fixing species Eucalyptus while decreasing chemical fertilization. Plant bioassays could help determine if the introduction of N2-fixing trees will improve the growth and mineral nutrition of non-fixing tree species in tropical planted forests.

2.
Sci Total Environ ; 742: 140535, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721724

RESUMO

Many studies have shown that introducing N2-fixing trees (e.g. Acacia mangium) in eucalypt plantations can increase soil N availability as a result of biological N2 fixation and faster N cycling. Some studies have also shown improved eucalypt P nutrition. However, the effects of N2-fixing trees on P cycling in tropical soils remain poorly understood and site-dependent. Our study aimed to assess the effects of planting A. mangium trees in areas managed over several decades with eucalypt plantations on soil organic P (Po) forms and low molecular weight organic acids (LMWOAs). Soil samples were collected from two tropical sites, one in Brazil and one in the Congo. Five different treatments were sampled at each site: monospecific acacia, monospecific eucalypt, below acacias in mixed-species, below eucalypts in mixed-species as well as native vegetation. Po forms and LMWOAs were identified in sodium hydroxide soil extracts using ion chromatography and relationships between these data and available P were determined. At both sites, the concentrations of most Po forms and LMWOAs were different between native ecosystems and monospecific eucalypt and acacia plots. Also, patterns of Po and LMWOAs were clearly separated, with glucose-6-P found mainly under acacia and phytate and oxalate mainly under eucalypt. Despite the strongest changes occurred at site with a higher N2 fixation and root development, acacia introduction was able to change the profile of organic P and LMWOAs in <10 years. The variations between available Pi, Po and LMWOA forms showed that P cycling was dominated by different processes at each site, that are rather physicochemical (via Pi desorption after LMWOAs release) at Itatinga and biological (via organic P mineralization) at Kissoko. Specific patterns of Po and LMWOAs forms found in soil sampled under acacia or eucalypt would therefore explain the effect of acacia introduction in both sites.


Assuntos
Acacia , Árvores , Brasil , Ecossistema , Peso Molecular , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA