RESUMO
Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.
Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-ZebraRESUMO
The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.
Assuntos
Catecol O-Metiltransferase , Galinhas , Camundongos , Animais , Galinhas/genética , Catecol O-Metiltransferase/genética , Camundongos Knockout , Melaninas/metabolismo , Pigmentação/genética , Mutação da Fase de LeituraRESUMO
Fossilized eyes permit inferences of the visual capacity of extinct arthropods1-3. However, structural and/or chemical modifications as a result of taphonomic and diagenetic processes can alter the original features, thereby necessitating comparisons with modern species. Here we report the detailed molecular composition and microanatomy of the eyes of 54-million-year-old crane-flies, which together provide a proxy for the interpretation of optical systems in some other ancient arthropods. These well-preserved visual organs comprise calcified corneal lenses that are separated by intervening spaces containing eumelanin pigment. We also show that eumelanin is present in the facet walls of living crane-flies, in which it forms the outermost ommatidial pigment shield in compound eyes incorporating a chitinous cornea. To our knowledge, this is the first record of melanic screening pigments in arthropods, and reveals a fossilization mode in insect eyes that involves a decay-resistant biochrome coupled with early diagenetic mineralization of the ommatidial lenses. The demonstrable secondary calcification of lens cuticle that was initially chitinous has implications for the proposed calcitic corneas of trilobites, which we posit are artefacts of preservation rather than a product of in vivo biomineralization4-7. Although trilobite eyes might have been partly mineralized for mechanical strength, a (more likely) organic composition would have enhanced function via gradient-index optics and increased control of lens shape.
Assuntos
Artrópodes/anatomia & histologia , Artrópodes/química , Dípteros/anatomia & histologia , Dípteros/química , Fósseis , Pigmentos Biológicos/análise , Pigmentos Biológicos/química , Animais , Biomarcadores/análise , Biomarcadores/química , Feminino , Tentilhões , Masculino , Melaninas/análise , Melaninas/química , Óptica e FotônicaRESUMO
Pigmentary coloration is widespread in animals. Its evolutionary and ecological features are often attributed to the property of predominant pigments; therefore, most research has focused on predominant pigments such as carotenoids in carotenoid-based coloration. However, coloration results from predominant pigments and many other minority pigments, and the importance of the latter is overlooked. Here, we focused on porphyrin, an "uncommon" pigment found in bird feathers, and investigated its importance in the context of feather color changes in the barn swallow Hirundo rustica. We found that the "pheomelanin-based coloration" of the barn swallow faded after the irradiation of UV light, and this effect was particularly strong in the feathers of young swallows (nestlings and fledglings, here). We also found that it is not the predominant pigment, pheomelanin, but protoporphyrin IX pigment that showed the same pattern of depigmentation after the irradiation of UV light, particularly in the feathers of young swallows. In fact, the abovementioned age-dependent feather color change was statistically explained by the amount of porphyrin in the feathers. The current study demonstrates that a minority pigment, porphyrin, explains within-season dynamic color change, an ecological feature of feather coloration. The porphyrin-mediated rapid color change would benefit young birds, in which feather coloration affects the parental food allocation during a few weeks before independence, but not later. Future studies should not ignore these minor but essential pigments and their evolutionary and ecological functions.
Assuntos
Plumas , Porfirinas , Animais , Raios Ultravioleta , Evolução Biológica , CarotenoidesRESUMO
Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early Jurassic ichthyosaur Stenopterygius. Our analyses recovered still-flexible remnants of the original scaleless skin, which comprises morphologically distinct epidermal and dermal layers. These are underlain by insulating blubber that would have augmented streamlining, buoyancy and homeothermy. Additionally, we identify endogenous proteinaceous and lipid constituents, together with keratinocytes and branched melanophores that contain eumelanin pigment. Distributional variation of melanophores across the body suggests countershading, possibly enhanced by physiological adjustments of colour to enable photoprotection, concealment and/or thermoregulation. Convergence of ichthyosaurs with extant marine amniotes thus extends to the ultrastructural and molecular levels, reflecting the omnipresent constraints of their shared adaptation to pelagic life.
Assuntos
Evolução Biológica , Regulação da Temperatura Corporal , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Fósseis , Homeostase , Adaptação Fisiológica , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/química , Animais , Derme/anatomia & histologia , Derme/química , Golfinhos , Epiderme/anatomia & histologia , Epiderme/química , Feminino , Queratinócitos/química , Lipídeos/análise , Masculino , Melaninas/análise , Melanóforos/química , Toninhas , Proteínas/análiseRESUMO
Pigment-based coloration is prevalent in animals, but its expression greatly varies across species, populations, and even among individuals in the same populations. Some animals are highly pigmented and thus have conspicuous coloration, whereas others are modestly pigmented and thus have drab coloration. A possible explanation for the variety in pigmentation is a resource-based tradeoff, in which resources invested in pigmentation are unavailable for other functional traits, and thus animals that need to invest in the latter have limited resources to invest in pigmentation. Resource-based tradeoff is plausible in theory, but direct tests are scarce, partially because of many components of pigment-based coloration (i.e., multiple pigments, integument microstructure, and stains) that affect coloration, preventing the use of coloration as an index of pigmentation. Here, using the barn swallow, Hirundo rustica, we examined the relationship between pheomelanin pigmentation in reddish throat patch (a precopulatory sexual trait) and total sperm length (a postcopulatory sexual trait), with particular attention to glutathione as the common resource. We predicted that pheomelanin, which is the predominant pigment in the reddish throat patch, should be negatively related to total sperm length, and that both sexual traits should be further negatively related to the amount of glutathione. As predicted, we found a negative relationship between pheomelanin pigmentation and total sperm length. However, the amount of glutathione in the blood showed no detectable relationship to them. The tradeoff between pheomelanin pigmentation and sperm size, as inferred from the current and previous results, might not be a simple glutathione-based tradeoff.
Assuntos
Glutationa , Melaninas , Pigmentação , Espermatozoides , Andorinhas , Animais , Masculino , Melaninas/metabolismo , Glutationa/metabolismo , Espermatozoides/fisiologia , Pigmentação/fisiologia , Andorinhas/fisiologia , Andorinhas/metabolismo , Andorinhas/genéticaRESUMO
Pterostilbene (PTS), which is abundant in blueberries, is a dimethyl derivative of the natural polyphenol resveratrol (RES). Several plant species, including peanuts and grapes, also produce PTS. Although RES has a wide range of health benefits, including anti-cancer properties, PTS has a robust pharmacological profile that includes a better intestinal absorption and an increased hepatic stability compared to RES. Indeed, PTS has a higher bioavailability and a lower toxicity compared to other stilbenes, making it an attractive drug candidate for the treatment of various diseases, including diabetes, cancer, cardiovascular disease, neurodegenerative disorders, and aging. We previously reported that RES serves as a substrate for tyrosinase, producing an o-quinone metabolite that is highly cytotoxic to melanocytes. The present study investigated whether PTS may also be metabolized by tyrosinase, similarly to RES. PTS was oxidized as a substrate by tyrosinase to form an o-quinone, which reacted with thiols, such as N-acetyl-L-cysteine, to form di- and tri-adducts. We also confirmed that PTS was taken up and metabolized by human tyrosinase-expressing 293T cells in amounts several times greater than RES. In addition, PTS showed a tyrosinase-dependent cytotoxicity against B16BL6 melanoma cells that was stronger than RES and also inhibited the formation of melanin in B16BL6 melanoma cells and in the culture medium. These results suggest that the two methyl groups of PTS, which are lipophilic, increase its membrane permeability, making it easier to bind to intracellular proteins, and may therefore be more cytotoxic to melanin-producing cells.
Assuntos
Melaninas , Monofenol Mono-Oxigenase , Estilbenos , Monofenol Mono-Oxigenase/metabolismo , Humanos , Estilbenos/farmacologia , Estilbenos/metabolismo , Estilbenos/química , Animais , Melaninas/metabolismo , Melaninas/biossíntese , Camundongos , Resveratrol/farmacologia , Resveratrol/análogos & derivados , Ativação Metabólica , Linhagem Celular Tumoral , Células HEK293 , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacosRESUMO
Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 â. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
Assuntos
Dopamina , Ferro , Dopamina/metabolismo , Ferro/metabolismo , Cobre , Melaninas/metabolismo , Oxirredução , Peróxido de Hidrogênio/químicaRESUMO
The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine ß-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Cisteína/metabolismo , Melaninas/metabolismo , Catecolaminas/metabolismo , Norepinefrina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismoRESUMO
The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other tissues. The diversity of colors in animals is mainly caused by the quantity and quality of their melanin, such as by the ratios of EM versus PM. We have developed micro-analytical methods to simultaneously measure EM and PM and used these to study the biochemical and genetic fundamentals of pigmentation. The photoreactivity of melanin has become a major focus of research because of the postulated relevance of EM and PM for the risk of UVA-induced melanoma. Our biochemical methods have found application in many clinical studies on genetic conditions associated with alterations in pigmentation. Recently, besides chemical degradative methods, other methods have been developed for the characterization of melanin, and these are also discussed here.
Assuntos
Melaninas , Melanoma , Animais , Melaninas/análise , Melanócitos , Pigmentação , Epiderme , Melanoma/químicaRESUMO
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a "mimicking experiment", in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively.
Assuntos
Melaninas , Salmo salar , Animais , Melaninas/metabolismo , Salmo salar/metabolismo , Di-Hidroxifenilalanina , PigmentaçãoRESUMO
N-propionyl-4-S-cysteaminylphenol (N-Pr-4-S-CAP) is a substrate for tyrosinase, which is a melanin biosynthesis enzyme and has been shown to be selectively incorporated into melanoma cells. It was found to cause selective cytotoxicity against melanocytes and melanoma cells after selective incorporation, resulting in the induction of anti-melanoma immunity. However, the underlying mechanisms for the induction of anti-melanoma immunity remain unclear. This study aimed to elucidate the cellular mechanism for the induction of anti-melanoma immunity and clarify whether N-Pr-4-S-CAP administration could be a new immunotherapeutic approach against melanoma, including local recurrence and distant metastasis. A T cell depletion assay was used for the identification of the effector cells responsible for N-Pr-4-S-CAP-mediated anti-melanoma immunity. A cross-presentation assay was carried out by using N-Pr-4-S-CAP-treated B16-OVA melanoma-loaded bone marrow-derived dendritic cells (BMDCs) and OVA-specific T cells. Administration of N-Pr-4-S-CAP induced CD8+ T cell-dependent anti-melanoma immunity and inhibited the growth of challenged B16F1 melanoma cells, indicating that the administration of N-Pr-4-S-CAP can be a prophylactic therapy against recurrence and metastasis of melanoma. Moreover, intratumoral injection of N-Pr-4-S-CAP in combination with BMDCs augmented the tumor growth inhibition when compared with administration of N-Pr-4-S-CAP alone. BMDCs cross-presented a melanoma-specific antigen to CD8+ T cells through N-Pr-4-S-CAP-mediated melanoma cell death. Combination therapy using N-Pr-4-S-CAP and BMDCs elicited a superior anti-melanoma effect. These results suggest that the administration of N-Pr-4-S-CAP could be a new strategy for the prevention of local recurrence and distant metastasis of melanoma.
Assuntos
Linfócitos T CD8-Positivos , Melanoma Experimental , Animais , Camundongos , Fenóis/farmacologia , Cisteamina/farmacologia , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Melanoma Maligno CutâneoRESUMO
To better understand the impact of solar light exposure on human skin, the chemical characterization of native melanins and their structural photo-modifications is of central interest. As the methods used today are invasive, we investigated the possibility of using multiphoton fluorescence lifetime (FLIM) imaging, along with phasor and bi-exponential fitting analyses, as a non-invasive alternative method for the chemical analysis of native and UVA-exposed melanins. We demonstrated that multiphoton FLIM allows the discrimination between native DHI, DHICA, Dopa eumelanins, pheomelanin, and mixed eu-/pheo-melanin polymers. We exposed melanin samples to high UVA doses to maximize their structural modifications. The UVA-induced oxidative, photo-degradation, and crosslinking changes were evidenced via an increase in fluorescence lifetimes along with a decrease in their relative contributions. Moreover, we introduced a new phasor parameter of a relative fraction of a UVA-modified species and provided evidence for its sensitivity in assessing the UVA effects. Globally, the fluorescence lifetime properties were modulated in a melanin-dependent and UVA dose-dependent manner, with the strongest modifications being observed for DHICA eumelanin and the weakest for pheomelanin. Multiphoton FLIM phasor and bi-exponential analyses hold promising perspectives for in vivo human skin mixed melanins characterization under UVA or other sunlight exposure conditions.
Assuntos
Melaninas , Humanos , Melaninas/metabolismo , Fluorescência , OxirreduçãoRESUMO
Coloration traits are central to animal communication; they often govern mate choice, promote reproductive isolation and catalyse speciation. Specific genetic changes can cause variation in coloration, yet far less is known about how overall coloration patterns-which involve combinations of multiple colour patches across the body-can arise and are genomically controlled. We performed genome-wide association analyses to link genomic changes to variation in melanin (eumelanin and pheomelanin) concentration in feathers from different body parts in the capuchino seedeaters, an avian radiation with diverse colour patterns despite remarkably low genetic differentiation across species. Cross-species colour variation in each plumage patch is associated with unique combinations of variants at a few genomic regions, which include mostly non-coding (presumably regulatory) areas close to known pigmentation genes. Genotype-phenotype associations can vary depending on patch colour and are stronger for eumelanin pigmentation, suggesting eumelanin production is tightly regulated. Although some genes are involved in colour variation in multiple patches, in some cases, the SNPs associated with colour changes in different patches segregate spatially. These results suggest that coloration patterning in capuchinos is generated by the modular combination of variants that regulate multiple melanogenesis genes, a mechanism that may have promoted this rapid radiation.
Assuntos
Plumas , Estudo de Associação Genômica Ampla , Animais , Genoma , Melaninas , Fenótipo , Pigmentação/genéticaRESUMO
Chemical leukoderma is an acquired depigmentation of the skin caused by repeated exposure to specific agents damaging to epidermal melanocytes. Case reports of chemical leukoderma have been associated with some consumer products. To date, there are no well-accepted approaches for evaluating and minimizing this risk. To this end, a framework is presented that evaluates the physical and chemical characteristics of compounds associated with chemical leukoderma and employs structure-activity relationship (SAR) read-across and predictive metabolism tools to determine whether a compound is at increased risk of evoking chemical leukoderma. In addition to in silico approaches, the testing strategy includes in chemico quinone formation and in vitro melanocyte cytotoxicity assays to dimension the risk as part of an overall weight of evidence approach to risk assessment. Cosmetic ingredients raspberry ketone, undecylenoyl phenylalanine, tocopheryl succinate, p-coumaric acid, resveratrol, resveratrol dimethyl ether, sucrose dilaurate, tranexamic acid, niacinamide and caffeic acid are evaluated in this framework and compared to positive controls rhododendrol and hydroquinone. Overall, this framework is considered an important step toward mitigating the risk of chemical leukoderma for compounds used in consumer products.
Assuntos
Hipopigmentação , Butanóis , Epiderme/metabolismo , Humanos , Hipopigmentação/induzido quimicamente , Hipopigmentação/metabolismo , Melanócitos/metabolismo , Resveratrol/metabolismo , Pele/metabolismoRESUMO
Recent discoveries of nonintegumentary melanosomes in extant and fossil amphibians offer potential insights into the physiological functions of melanin not directly related to color production, but the phylogenetic distribution and evolutionary history of these internal melanosomes has not been characterized systematically. Here, we present a holistic method to discriminate among melanized tissues by analyzing the anatomical distribution, morphology, and chemistry of melanosomes in various tissues in a phylogenetically broad sample of extant and fossil vertebrates. Our results show that internal melanosomes in all extant vertebrates analyzed have tissue-specific geometries and elemental signatures. Similar distinct populations of preserved melanosomes in phylogenetically diverse vertebrate fossils often map onto specific anatomical features. This approach also reveals the presence of various melanosome-rich internal tissues in fossils, providing a mechanism for the interpretation of the internal anatomy of ancient vertebrates. Collectively, these data indicate that vertebrate melanins share fundamental physiological roles in homeostasis via the scavenging and sequestering of metals and suggest that intimate links between melanin and metal metabolism in vertebrates have deep evolutionary origins.
Assuntos
Extinção Biológica , Fósseis , Melanossomas/química , Vertebrados , Animais , Melaninas/química , Melaninas/metabolismo , Melanossomas/ultraestrutura , Especificidade de ÓrgãosRESUMO
In a previous study, we observed that the hair color of Japanese females darkens with age and that the causes of this are the increase in melanosome size, the amount of melanin, and the mol% of 5,6-dihydroxyindole (DHI) which has a high absorbance. In this study, we extended the same analyses to male hair to examine the sex differences in hair color, melanin composition, and melanosome morphology. Male hair also tended to darken with age, but it was darker than female hair in those of younger ages. Although there was no age dependence of DHI mol% in male hair, as with female hair, the melanosomes' sizes enlarged with age, the total melanin amount increased, and these findings were correlated with hair color. The analyses, considering age dependence, revealed that there were significant sex differences in the ratio of absorbance of dissolved melanin at the wavelength of 650 nm to 500 nm, in pheomelanin mol%, and in melanosome morphology parameters such as the minor axis. This may be the cause of the sex differences in hair color. Furthermore, the factors related to hair color were analyzed using all the data of the male and female hairs. The results suggested that total melanin amount, pheomelanin mol%, and DHI mol% correlated with hair color.
Assuntos
Cor de Cabelo , Melanossomas , Feminino , Masculino , Humanos , Melaninas , Caracteres Sexuais , JapãoRESUMO
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Dopamina/metabolismo , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
A major advance in drug discovery and targeted therapy directed at cancer cells may be achieved by the exploitation and immunomodulation of their unique biological properties. This review summarizes our efforts to develop novel chemo-thermo-immunotherapy (CTI therapy) by conjugating a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP: amine analog of tyrosine), with magnetite nanoparticles (MNP). In our approach, NPrCAP provides a unique drug delivery system (DDS) because of its selective incorporation into melanoma cells. It also functions as a melanoma-targeted therapeutic drug because of its production of highly reactive free radicals (melanoma-targeted chemotherapy). Moreover, the utilization of MNP is a platform to develop thermo-immunotherapy because of heat shock protein (HSP) expression upon heat generation in MNP by exposure to an alternating magnetic field (AMF). This comprehensive review covers experimental in vivo and in vitro mouse melanoma models and preliminary clinical trials with a limited number of advanced melanoma patients. We also discuss the future directions of CTI therapy.
Assuntos
Nanopartículas de Magnetita , Melanoma , Animais , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Melanoma/metabolismo , CamundongosRESUMO
A mid-infrared free-electron laser (MIR-FEL) is a synchrotron-radiation-based femto- to pico-second pulse laser. It has unique characteristics such as variable wavelengths in the infrared region and an intense pulse energy. So far, MIR-FELs have been utilized to perform multi-photon absorption reactions against various gas molecules and protein aggregates in physical chemistry and biomedical fields. However, the applicability of MIR-FELs for the structural analysis of solid materials is not well recognized in the analytical field. In the current study, an MIR-FEL is applied for the first time to analyse the internal structure of biological materials by using fossilized inks from cephalopods as the model sample. Two kinds of fossilized inks that were collected from different strata were irradiated at the dry state by tuning the oscillation wavelengths of the MIR-FEL to the phosphoryl stretching mode of hydroxyapatite (9.6â µm) and to the carbonyl stretching mode of melanin (5.8â µm), and the subsequent structural changes in those materials were observed by using infrared microscopy and far-infrared spectroscopy. The structural variation of these biological fossils is discussed based on the infrared-absorption spectral changes that were enhanced by the MIR-FEL irradiation, and the potential use of MIR-FELs for the structural evaluation of biomaterials is suggested.