Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Psychophysiology ; : e14648, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152653

RESUMO

The perception of signals from within the body, known as interoception, is increasingly recognized as a prerequisite for physical and mental health. This study is dedicated to the development of effective technological approaches for enhancing interoceptive abilities. We provide evidence of the effectiveness and practical feasibility of a novel real-time haptic heartbeat supplementation technology combining principles of biofeedback and sensory augmentation. In a randomized controlled study, we applied the developed naturalistic haptic feedback on a group of 30 adults, while another group of 30 adults received more traditional real-time visual heartbeat feedback. A single session of haptic, but not visual heartbeat feedback resulted in increased interoceptive accuracy and confidence, as measured by the heart rate discrimination task, and in a shift of attention toward the body. Participants rated the developed technology as more helpful and pleasant than the visual feedback, thus indicating high user satisfaction. The study highlights the importance of matching sensory characteristics of the feedback provided to the natural bodily prototype. Our work suggests that real-time haptic feedback might be a superior approach for strengthening the mind-body connection in interventions for physical and mental health.

2.
PLoS One ; 19(9): e0310033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39321152

RESUMO

This study explores spatial perception of depth by employing a novel proof of concept sensory substitution algorithm. The algorithm taps into existing cognitive scaffolds such as language and cross modal correspondences by naming objects in the scene while representing their elevation and depth by manipulation of the auditory properties for each axis. While the representation of verticality utilized a previously tested correspondence with pitch, the representation of depth employed an ecologically inspired manipulation, based on the loss of gain and filtration of higher frequency sounds over distance. The study, involving 40 participants, seven of which were blind (5) or visually impaired (2), investigates the intrinsicness of an ecologically inspired mapping of auditory cues for depth by comparing it to an interchanged condition where the mappings of the two axes are swapped. All participants successfully learned to use the algorithm following a very brief period of training, with the blind and visually impaired participants showing similar levels of success for learning to use the algorithm as did their sighted counterparts. A significant difference was found at baseline between the two conditions, indicating the intuitiveness of the original ecologically inspired mapping. Despite this, participants were able to achieve similar success rates following the training in both conditions. The findings indicate that both intrinsic and learned cues come into play with respect to depth perception. Moreover, they suggest that by employing perceptual learning, novel sensory mappings can be trained in adulthood. Regarding the blind and visually impaired, the results also support the convergence view, which claims that with training, their spatial abilities can converge with those of the sighted. Finally, we discuss how the algorithm can open new avenues for accessibility technologies, virtual reality, and other practical applications.


Assuntos
Algoritmos , Cegueira , Sinais (Psicologia) , Percepção de Profundidade , Pessoas com Deficiência Visual , Humanos , Masculino , Feminino , Adulto , Percepção de Profundidade/fisiologia , Cegueira/fisiopatologia , Pessoa de Meia-Idade , Aprendizagem/fisiologia , Adulto Jovem
3.
Sci Rep ; 14(1): 14855, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937475

RESUMO

Exploring a novel approach to mental health technology, this study illuminates the intricate interplay between exteroception (the perception of the external world), and interoception (the perception of the internal world). Drawing on principles of sensory substitution, we investigated how interoceptive signals, particularly respiration, could be conveyed through exteroceptive modalities, namely vision and hearing. To this end, we developed a unique, immersive multisensory environment that translates respiratory signals in real-time into dynamic visual and auditory stimuli. The system was evaluated by employing a battery of various psychological assessments, with the findings indicating a significant increase in participants' interoceptive sensibility and an enhancement of the state of flow, signifying immersive and positive engagement with the experience. Furthermore, a correlation between these two variables emerged, revealing a bidirectional enhancement between the state of flow and interoceptive sensibility. Our research is the first to present a sensory substitution approach for substituting between interoceptive and exteroceptive senses, and specifically as a transformative method for mental health interventions, paving the way for future research.


Assuntos
Interocepção , Humanos , Interocepção/fisiologia , Feminino , Masculino , Adulto , Adulto Jovem , Estimulação Acústica , Respiração , Estimulação Luminosa
4.
Front Hum Neurosci ; 16: 1058093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776219

RESUMO

Humans, like most animals, integrate sensory input in the brain from different sensory modalities. Yet humans are distinct in their ability to grasp symbolic input, which is interpreted into a cognitive mental representation of the world. This representation merges with external sensory input, providing modality integration of a different sort. This study evaluates the Topo-Speech algorithm in the blind and visually impaired. The system provides spatial information about the external world by applying sensory substitution alongside symbolic representations in a manner that corresponds with the unique way our brains acquire and process information. This is done by conveying spatial information, customarily acquired through vision, through the auditory channel, in a combination of sensory (auditory) features and symbolic language (named/spoken) features. The Topo-Speech sweeps the visual scene or image and represents objects' identity by employing naming in a spoken word and simultaneously conveying the objects' location by mapping the x-axis of the visual scene or image to the time it is announced and the y-axis by mapping the location to the pitch of the voice. This proof of concept study primarily explores the practical applicability of this approach in 22 visually impaired and blind individuals. The findings showed that individuals from both populations could effectively interpret and use the algorithm after a single training session. The blind showed an accuracy of 74.45%, while the visually impaired had an average accuracy of 72.74%. These results are comparable to those of the sighted, as shown in previous research, with all participants above chance level. As such, we demonstrate practically how aspects of spatial information can be transmitted through non-visual channels. To complement the findings, we weigh in on debates concerning models of spatial knowledge (the persistent, cumulative, or convergent models) and the capacity for spatial representation in the blind. We suggest the present study's findings support the convergence model and the scenario that posits the blind are capable of some aspects of spatial representation as depicted by the algorithm comparable to those of the sighted. Finally, we present possible future developments, implementations, and use cases for the system as an aid for the blind and visually impaired.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA