Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 435(7045): 1108-12, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-15973410

RESUMO

Acute stress suppresses pain by activating brain pathways that engage opioid or non-opioid mechanisms. Here we show that an opioid-independent form of this phenomenon, termed stress-induced analgesia, is mediated by the release of endogenous marijuana-like (cannabinoid) compounds in the brain. Blockade of cannabinoid CB(1) receptors in the periaqueductal grey matter of the midbrain prevents non-opioid stress-induced analgesia. In this region, stress elicits the rapid formation of two endogenous cannabinoids, the lipids 2-arachidonoylglycerol (2-AG) and anandamide. A newly developed inhibitor of the 2-AG-deactivating enzyme, monoacylglycerol lipase, selectively increases 2-AG concentrations and, when injected into the periaqueductal grey matter, enhances stress-induced analgesia in a CB1-dependent manner. Inhibitors of the anandamide-deactivating enzyme fatty-acid amide hydrolase, which selectively elevate anandamide concentrations, exert similar effects. Our results indicate that the coordinated release of 2-AG and anandamide in the periaqueductal grey matter might mediate opioid-independent stress-induced analgesia. These studies also identify monoacylglycerol lipase as a previously unrecognized therapeutic target.


Assuntos
Analgesia , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Estresse Fisiológico/fisiopatologia , Animais , Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/metabolismo , Transporte Biológico/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Moduladores de Receptores de Canabinoides/biossíntese , Glicerídeos/biossíntese , Glicerídeos/metabolismo , Hidrólise/efeitos dos fármacos , Técnicas In Vitro , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Alcamidas Poli-Insaturadas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo
2.
J Lipid Res ; 51(1): 112-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19584404

RESUMO

Using a partially purified bovine brain extract, our lab identified three novel endogenous acyl amino acids in mammalian tissues. The presence of numerous amino acids in the body and their ability to form amides with several saturated and unsaturated fatty acids indicated the potential existence of a large number of heretofore unidentified acyl amino acids. Reports of several additional acyl amino acids that activate G-protein coupled receptors (e.g., N-arachidonoyl glycine, N-arachidonoyl serine) and transient receptor potential channels (e.g., N-arachidonoyl dopamine, N-acyl taurines) suggested that some or many novel acyl amino acids could serve as signaling molecules. Here, we used a targeted lipidomics approach including specific enrichment steps, nano-LC/MS/MS, high-throughput screening of the datasets with a potent search algorithm based on fragment ion analysis, and quantification using the multiple reaction monitoring mode in Analyst software to measure the biological levels of acyl amino acids in rat brain. We successfully identified 50 novel endogenous acyl amino acids present at 0.2 to 69 pmol g(-1) wet rat brain.


Assuntos
Aminoácidos/análise , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Metabolismo dos Lipídeos , Masculino , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Extração em Fase Sólida , Ácido gama-Aminobutírico/metabolismo
3.
Anal Chem ; 82(1): 359-67, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19968249

RESUMO

The ability to analyze complex (macro) molecules is of fundamental importance for understanding chemical, physical, and biological processes. Complexity may arise from small differences in structure, large dynamic range, as well as a vast range in solubility or ionization, imposing daunting tasks in areas as different as lipidomics and proteomics. Here, we describe a rapid matrix application that permits the deposition of matrix-assisted laser desorption/ionization (MALDI) matrix solvent-free. This solvent-free one-step automatic matrix deposition is achieved through vigorous movements of beads pressing the matrix material through a metal mesh. The mesh (20 mum) produces homogeneous coverage of <12 microm crystals (DHB, CHCA matrixes) in 1 min, as determined by optical microscopy, permitting fast uniform coverage of analyte and possible high-spatial resolution surface analysis. Homogenous tissue coverage of <5 microm sized crystals is achieved using a 3 microm mesh. Solvent-free MALDI analysis on a time-of-flight (TOF) mass analyzer of mouse brain tissue homogenously covered with CHCA matrix subsequently provides a homogeneous response in ion signal intensity. Total solvent-free analysis (TSA) by mass spectrometry (MS) of tissue sections is carried out by applying the MALDI matrix solvent-free for subsequent ionization and gas phase separation for decongestion of complexity in the absence of any solvent using ion mobility spectrometry (IMS) followed by MS detection. Isobaric compositions were well-delineated using TSA by MS.


Assuntos
Encéfalo/anatomia & histologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Solventes
4.
BMC Neurosci ; 11: 44, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20346144

RESUMO

BACKGROUND: Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration. RESULTS: Using Boyden chamber migration experiments, yellow tetrazolium (MTT) conversion, In-cell Western, qPCR and immunocytochemistry we show that NAGly, at sub-nanomolar concentrations, and Abn-CBD potently drive cellular migration in both BV-2 microglia and HEK293-GPR18 transfected cells, but neither induce migration in HEK-GPR55 or non-transfected HEK293 wildtype cells. Migration effects are blocked or attenuated in both systems by the 'Abn-CBD' receptor antagonist O-1918, and low efficacy agonists N-arachidonoyl-serine and cannabidiol. NAGly promotes proliferation and activation of MAP kinases in BV-2 microglia and HEK293-GPR18 cells at low nanomolar concentrations - cellular responses correlated with microglial migration. Additionally, BV-2 cells show GPR18 immunocytochemical staining and abundant GPR18 mRNA. qPCR demonstrates that primary microglia, likewise, express abundant amounts of GPR18 mRNA. CONCLUSIONS: NAGly is the most effective lipid recruiter of BV-2 microglia currently reported and its effects mimic those of Abn-CBD. The data generated from this study supports the hypothesis that GPR18 is the previously unidentified 'Abn-CBD' receptor. The marked potency of NAGly acting on GPR18 to elicit directed migration, proliferation and perhaps other MAPK-dependent phenomena advances our understanding of the lipid-based signaling mechanisms employed by the CNS to actively recruit microglia to sites of interest. It offers a novel research avenue for developing therapeutics to elicit a self-renewing population of neuroregenerative microglia, or alternatively, to prevent the accumulation of misdirected, pro-inflammatory microglia which contribute to and exacerbate neurodegenerative disease.


Assuntos
Ácidos Araquidônicos/metabolismo , Movimento Celular/imunologia , Glicina/análogos & derivados , Microglia/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Recém-Nascidos , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Glicina/metabolismo , Glicina/farmacologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Vigilância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Receptores Acoplados a Proteínas G/agonistas , Resorcinóis/metabolismo , Resorcinóis/farmacologia
5.
Int J Mol Sci ; 11(10): 3965-76, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21152313

RESUMO

Lysophosphatidic acid (LPA) is the umbrella term for lipid signaling molecules that share structural homology and activate the family of LPA receptors. Farnesyl Pyrophosphate (FPP) is commonly known as an intermediate in the synthesis of steroid hormones; however, its function as a signaling lipid is beginning to be explored. FPP was recently shown to an activator of the G-protein coupled receptor 92 (also known as LPA5) of the calcium channel TRPV(3). The LPA receptors (including GPR92) are associated with the signal transduction of noxious stimuli, however, very little is known about the distribution of their signaling ligands (LPAs and FPP) in the brain. Here, using HPLC/MS/MS, we developed extraction and analytical methods for measuring levels of FPP and 4 species of LPA (palmitoyl, stearoyl, oleoyl and arachidonoyl-sn-glycerol-3 phosphate) in rodent brain. Relative distributions of each of the five compounds was significantly different across the brain suggesting divergent functionality for each as signaling molecules based on where and how much of each is being produced. Brainstem, midbrain, and thalamus contained the highest levels measured for each compound, though none in the same ratios while relatively small amounts were produced in cortex and cerebellum. These data provide a framework for investigations into functional relationships of these lipid ligands in specific brain areas, many of which are associated with the perception of pain.


Assuntos
Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Animais , Feminino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley
6.
J Neurosci ; 28(51): 13727-37, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19091963

RESUMO

The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared with wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E(2) (PGE(2)) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naive mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-17203212 [corrected], however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Coadministration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE(2).


Assuntos
Dinoprostona/metabolismo , Queratinócitos/metabolismo , Limiar da Dor/fisiologia , Dor/metabolismo , Pele/citologia , Canais de Cátion TRPV/fisiologia , Aminopiridinas/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Expressão Gênica , Humanos , Ibuprofeno/farmacologia , Queratinócitos/citologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura , Transgenes
7.
FASEB J ; 22(8): 3024-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18492727

RESUMO

Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3(-/-) mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3(+/+) mice. It had no effect on keratinocytes from TRPV3(-/-) mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diterpenos/farmacologia , Psicotrópicos/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Ansiolíticos/isolamento & purificação , Ansiolíticos/farmacologia , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Boswellia/química , Linhagem Celular , Diterpenos/isolamento & purificação , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plantas Medicinais/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Psicotrópicos/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
8.
BMC Biochem ; 10: 14, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19460156

RESUMO

BACKGROUND: N-arachidonoyl glycine (NAGly) is an endogenous signaling lipid with a wide variety of biological activity whose biosynthesis is poorly understood. Two primary biosynthetic pathways have been proposed. One suggests that NAGly is formed via an enzymatically regulated conjugation of arachidonic acid (AA) and glycine. The other suggests that NAGly is an oxidative metabolite of the endogenous cannabinoid, anandamide (AEA), through an alcohol dehydrogenase. Here using both in vitro and in vivo assays measuring metabolites with LC/MS/MS we test the hypothesis that both pathways are present in mammalian cells. RESULTS: The metabolic products of deuterium-labeled AEA, D4AEA (deuterium on ethanolamine), indicated that NAGly is formed by the oxidation of the ethanolamine creating a D2NAGly product in both RAW 264.7 and C6 glioma cells. Significantly, D4AEA produced a D0NAGly product only in C6 glioma cells suggesting that the hydrolysis of AEA yielded AA that was used preferentially in a conjugation reaction. Addition of the fatty acid amide (FAAH) inhibitor URB 597 blocked the production of D0NAGly in these cells. Incubation with D8AA in C6 glioma cells likewise produced D8NAGly; however, with significantly less efficacy leading to the hypothesis that FAAH-initiated AEA-released AA conjugation with glycine predominates in these cells. Furthermore, the levels of AEA in the brain were significantly increased, whereas those of NAGly were significantly decreased after systemic injection of URB 597 in rats and in FAAH KO mice further supporting a role for FAAH in endogenous NAGly biosynthesis. Incubations of NAGly and recombinant FAAH demonstrated that NAGly is a significantly less efficacious substrate for FAAH with only ~50% hydrolysis at 30 minutes compared to 100% hydrolysis of AEA. Co-incubations of AEA and glycine with recombinant FAAH did not, however, produce NAGly. CONCLUSION: These data support the hypothesis that the signaling lipid NAGly is a metabolic product of AEA by both oxidative metabolism of the AEA ethanolamine moiety and through the conjugation of glycine to AA that is released during AEA hydrolysis by FAAH.


Assuntos
Ácidos Araquidônicos/biossíntese , Glicina/análogos & derivados , Redes e Vias Metabólicas , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/deficiência , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Química Encefálica , Carbamatos/farmacologia , Linhagem Celular Tumoral , Endocanabinoides , Glicina/biossíntese , Glicina/química , Glicina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Alcamidas Poli-Insaturadas/química , Ratos , Proteínas Recombinantes/metabolismo
9.
Bioorg Med Chem Lett ; 19(1): 237-41, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19013794

RESUMO

N-Arachidonoyl ethanolamide or anandamide is an endocannabinoid found in most tissues where it acts as an important signaling mediator in a number of physiological and pathophysiological processes. Consequently, intense effort has been focused on understanding all its biosynthetic and metabolic pathways. Herein we report human alcohol dehydrogenase-catalyzed sequential oxidation of anandamide to N-arachidonoyl glycine, a prototypical member of the class of long chain fatty acyl glycines, a new group of lipid mediators with a wide array of physiological effects. We also present a straightforward synthesis for a series of N-acyl glycinals including N-arachidonoyl glycinal, an intermediate in the alcohol dehydrogenase-catalyzed oxidation of anandamide.


Assuntos
Álcool Desidrogenase/metabolismo , Ácidos Araquidônicos/metabolismo , Glicina/biossíntese , Alcamidas Poli-Insaturadas/metabolismo , Catálise , Endocanabinoides , Humanos , Redes e Vias Metabólicas , Oxirredução
10.
Mol Pharmacol ; 74(1): 213-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18424551

RESUMO

N-arachidonoyl glycine is an endogenous arachidonoyl amide that activates the orphan G protein-coupled receptor (GPCR) GPR18 in a pertussis toxin (PTX)-sensitive manner and produces antinociceptive and antiinflammatory effects. It is produced by direct conjugation of arachidonic acid to glycine and by oxidative metabolism of the endocannabinoid anandamide. Based on the presence of enzymes that conjugate fatty acids with glycine and the high abundance of palmitic acid in the brain, we hypothesized the endogenous formation of the saturated N-acyl amide N-palmitoyl glycine (PalGly). PalGly was partially purified from rat lipid extracts and identified using nano-high-performance liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Here, we show that PalGly is produced after cellular stimulation and that it occurs in high levels in rat skin and spinal cord. PalGly was up-regulated in fatty acid amide hydrolase knockout mice, suggesting a pathway for enzymatic regulation. PalGly potently inhibited heat-evoked firing of nociceptive neurons in rat dorsal horn. In addition, PalGly induced transient calcium influx in native adult dorsal root ganglion (DRG) cells and a DRG-like cell line (F-11). The effect of PalGly on the latter cells was characterized by strict structural requirements, PTX sensitivity, and dependence on the presence of extracellular calcium. PalGly-induced calcium influx was blocked by the nonselective calcium channel blockers ruthenium red, 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole (SK&F96365), and La3+. Furthermore, PalGly contributed to the production of NO through calcium-sensitive nitric-oxide synthase enzymes present in F-11 cells and was inhibited by the nitric-oxide synthase inhibitor 7-nitroindazole.


Assuntos
Cálcio/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Neurônios Aferentes/metabolismo , Óxido Nítrico/biossíntese , Ácidos Palmíticos/farmacologia , Receptores de Canabinoides/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Anticorpos , Benzamidas/farmacologia , Química Encefálica , Carbamatos/farmacologia , Linhagem Celular , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/química , Gânglios Espinais/citologia , Glicina/análise , Glicina/química , Glicina/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/efeitos dos fármacos , Ácidos Palmíticos/química , Toxina Pertussis/farmacologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Regulação para Cima
11.
Br J Pharmacol ; 153(7): 1538-49, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18297109

RESUMO

BACKGROUND AND PURPOSE: Recombinant cyclooxygenase-2 (COX-2) oxygenates 2-arachidonoylglycerol (2-AG) in vitro. We examined whether prostaglandin E2 glycerol ester (PGE2-G), a COX-2 metabolite of 2-AG, occurs endogenously and affects nociception and immune responses. EXPERIMENTAL APPROACH: Using mass spectrometric techniques, we examined whether PGE2-G occurs in vivo and if its levels are altered by inhibition of COX-2, monoacylglycerol (MAG) lipase or inflammation induced by carrageenan. We also examined the effects of PGE2-G on nociception in rats and NFkappaB activity in RAW264.7 cells. KEY RESULTS: PGE2-G occurs endogenously in rat. Its levels were decreased by inhibition of COX-2 and MAG lipase but were unaffected by carrageenan. Intraplantar administration of PGE2-G induced mechanical allodynia and thermal hyperalgesia. In RAW264.7 cells, PGE2-G and PGE2 produced similar, dose-related changes in NFkappaB activity. PGE2-G was quickly metabolized into PGE2. While the effects of PGE2 on thermal hyperalgesia and NFkappaB activity were completely blocked by a cocktail of antagonists for prostanoid receptors, the same cocktail of antagonists only partially antagonized the actions of PGE2-G. CONCLUSIONS AND IMPLICATIONS: Thermal hyperalgesia and immunomodulation induced by PGE2-G were only partially mediated by PGE2, which is formed by metabolism of PGE2-G. PGE2-G may function through a unique receptor previously postulated to mediate its effects. Taken together, these findings demonstrate that 2-AG is oxygenated in vivo by COX-2 producing PGE2-G, which plays a role in pain and immunomodulation. COX-2 could act as an enzymatic switch by converting 2-AG from an antinociceptive mediator to a pro-nociceptive prostanoid.


Assuntos
Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Glicerídeos/metabolismo , Hiperalgesia/etiologia , Animais , Linhagem Celular , Dinoprostona/biossíntese , Dinoprostona/farmacologia , Endocanabinoides , Temperatura Alta , Macrófagos/metabolismo , Masculino , Espectrometria de Massas , Camundongos , NF-kappa B/metabolismo , Dor/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina/metabolismo
12.
J Am Soc Mass Spectrom ; 19(1): 14-26, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18024058

RESUMO

The fragmentation of 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid [leukotriene C4 or LTC4 (5, 6)] and its isomeric counterpart LTC4 (14, 15) were studied by low and high-energy collisional induced dissociation (CID) and 157 nm photofragmentation. For singly charged protonated LTC4 precursors, photodissociation significantly enhances the signal intensities of informative fragment ions that are very important to distinguish the two LTC4 isomers and generates a few additional fragment ions that are not usually observed in CID experiments. The ion trap enables MSn experiments on the fragment ions generated by photodissociation. Photofragmentation is found to be suitable for the structural identification and isomeric differentiation of cysteinyl leukotrienes and is more informative than low or high-energy CID. We describe for the first time the structural characterization of the LTC4 (14, 15) isomer by mass spectrometry using CID and 157 nm light activation methods.


Assuntos
Leucotrieno C4/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Isomerismo , Estrutura Molecular , Fotoquímica
13.
FEBS Lett ; 581(25): 4927-31, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17904123

RESUMO

Recent studies have highlighted the importance of paracrine growth factors as mediators of pro-angiogenic effects by endothelial progenitor cells (EPCs), but little is known about the release of lipid-based factors like endocannabinoids by EPCs. In the current study, the release of the endocannabinoids anandamide and 2-arachidonoylglycerol by distinct human EPC sub-types was measured using HPLC/tandem mass-spectrometry. Anandamide release was highest by adult blood colony-forming EPCs at baseline and they also demonstrated increased 2-arachidonoylglycerol release with TNF-alpha stimulation. Treatment of mature endothelial cells with endocannabinoids significantly reduced the induction of the pro-inflammatory adhesion molecule CD106 (VCAM-1) by TNF-alpha.


Assuntos
Ácidos Araquidônicos/biossíntese , Moduladores de Receptores de Canabinoides/biossíntese , Endocanabinoides , Endotélio Vascular/citologia , Glicerídeos/biossíntese , Células-Tronco/metabolismo , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicerídeos/farmacologia , Humanos , Alcamidas Poli-Insaturadas/farmacologia , Células-Tronco/classificação , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
Neurosci Lett ; 421(3): 270-4, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17574742

RESUMO

Chronic alcohol exposure leads to significant changes in the levels of endocannabinoids and their receptors in the brains of humans and laboratory animals, as well as in cultured neuronal cells. However, little is known about the effects of short-term periods of alcohol exposure. In the present study, we examined the changes in endocannabinoid levels (anandamide and 2-arachidonoylglycerol), as well as four additional N-acylethanolamines, in four brain regions of rats exposed to alcohol through the liquid diet for a period of 24h. The levels of N-acylethanolamines were diminished 24h after the onset of alcohol exposure. This was particularly evident for anandamide in the hypothalamus, amygdala and caudate-putamen, for N-palmitoylethanolamine in the caudate-putamen, for N-oleoylethanolamine in the hypothalamus, caudate-putamen and prefrontal cortex, and for N-stearoylethanolamine in the amygdala. The only exception was N-linoleoylethanolamine for which the levels increased in the amygdala after the exposure to alcohol. The levels of the other major endocannabinoid, 2-arachidonoylglycerol, were also reduced with marked effects in the prefrontal cortex. These results support the notion that short-term alcohol exposure reduces endocannabinoid levels in the brain accompanied by a reduction in several related N-acylethanolamines.


Assuntos
Ácidos Araquidônicos/análise , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Etanolaminas/análise , Glicerídeos/análise , Alcamidas Poli-Insaturadas/análise , Animais , Química Encefálica/efeitos dos fármacos , Cromatografia Líquida/métodos , Endocanabinoides , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
15.
Pharmacol Ther ; 95(2): 127-35, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12182960

RESUMO

During the last decade, rigorous scientific methods have been applied to determine the effects of cannabinoids on nociceptive neurotransmission. Cannabinoids have been observed to markedly decrease signalling in specific neural pathways that transmit messages about pain. These effects were found to be due to the suppression of spinal and thalamic nociceptive neurons, and independent of any actions on either the motor system or sensory neurons that transmit messages related to non-nociceptive stimulation. Spinal, supraspinal, and peripheral sites of cannabinoid analgesia have been identified. The discovery of endocannabinoids raised the question of their natural role in pain. Multiple lines of evidence indicate that endocannabinoids serve naturally to suppress pain. While it is now clear that cannabinoids suppress nociceptive neurotransmission, more work is needed to establish the clinical utility of these compounds. The few human studies conducted to date produced mixed results, with more promising findings coming from studies of clinical pain as compared with experimental pain. The therapeutic potential of cannabinoids remains an important topic for future investigations.


Assuntos
Analgésicos/farmacologia , Canabinoides/farmacologia , Dor , Analgésicos/uso terapêutico , Animais , Moduladores de Receptores de Canabinoides , Canabinoides/uso terapêutico , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Humanos , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Dor/tratamento farmacológico , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Sistema Nervoso Periférico/efeitos dos fármacos , Sistema Nervoso Periférico/fisiologia , Receptores de Canabinoides , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
16.
Br J Pharmacol ; 144(4): 459-65, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15655504

RESUMO

The discovery of the endogenous cannabimimetic lipid mediators, anandamide and 2-arachidonoyl glycerol, opened the door to the discovery of other endogenous lipid mediators similar in structure and function. The majority of these compounds do not bind appreciably to known cannabinoid receptors; yet some of them produce cannabimimetic effects while others exert actions through novel mechanisms that remain to be elucidated. This review explores the growing diversity of recently discovered putative lipid mediators and their relationship to the endogenous cannabinoid system. The possibility that there remain many unidentified signalling lipids coupled with the evidence that many of these yield bioactive metabolites due to actions of known enzymes (e.g. cyclooxygenases, lipoxygenases, cytochrome P450s) suggests the existence of a large and complex family of lipid mediators about which only little is known at this time. The elucidation of the biochemistry and pharmacology of these compounds may provide therapeutic targets for a variety of conditions including sleep dysfunction, eating disorders, cardiovascular disease, as well as inflammation and pain.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Moduladores de Receptores de Canabinoides/química , Ácidos Graxos Insaturados/química , Humanos , Estrutura Molecular , Ligação Proteica
17.
Prostaglandins Other Lipid Mediat ; 77(1-4): 35-45, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16099389

RESUMO

Mass spectrometric approaches to the identification and quantification of lipid signalling molecules are reviewed. Fatty acid amides are an important new class of lipid signalling molecules which include oleamide, the endocannabinoid anandamide, the endovanilloid/endocannabinoid N-arachidonoyldopamine (NADA) and the endovanilloid N-oleoyldopamine (OLDA) among many others. This diverse group of endogenous compounds comprises combinations of acyl backbones coupled by an amide bond to any of a variety of different small polar molecules such as ethanolamine, various amino acids, and catecholamines. Many fatty acid amides appear to play a role in pain and inflammation. Targeted lipidomics of fatty acid amides aims to identify new members of this diverse class of compounds, of which only a few representative molecules have been characterized to date. This effort has been made feasible by advances in chromatography and mass spectrometry, which permits: (1) identification of compounds present in complex mixtures, (2) astronomical increases in sensitivity due to miniaturization of HPLC components, and (3) novel scanning modes that permit the identification of compounds exhibiting similar structural components. Insofar as lipid signalling molecules such as prostanoids, leukotrienes and endocannabinoids operate via G-protein coupled receptors (GPCR), it appears likely that many of the numerous lipids awaiting identification may serve as ligands for any of the greater than 150 orphan GPCRs.


Assuntos
Amidas/química , Ácidos Graxos/química , Metabolismo dos Lipídeos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Animais , Ácidos Araquidônicos/química , Cromatografia Líquida de Alta Pressão , Dopamina/análogos & derivados , Dopamina/química , Ácidos Graxos/metabolismo , Humanos , Inflamação , Lipídeos/química , Espectrometria de Massas , Modelos Químicos , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
18.
Neuropharmacology ; 47(1): 81-91, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15165836

RESUMO

Previous studies have indicated that cannabinoids inhibit presynaptic neurotransmitter release in brain through CB1 receptors. To examine this issue in a primary neuronal culture system, rat cerebellar granule cells (CGCs) were prepared. [35S]GTPgammaS binding assays in saponin-permeabilized CGCs showed that G-protein activation by the CB1 agonist, WIN55212-2, and adenosine A1 agonist, phenylisopropyladenosine, was maximal during the second week in culture. Delta9-tetrahydrocannabinol stimulated [35S]GTPgammaS binding to a lesser degree than WIN55212-2, and the antagonists SR141716A and AM281 acted as inverse agonists in intact CGCs, but not in CGC membrane preparations. Ten micromolar WIN55212-2 and Delta9-tetrahydrocannabinol decreased depolarization-evoked efflux of [3H]-D-aspartate from CGCs by 32% and 13%, respectively. SR141716A and AM281 increased [3H]-D-aspartate release by 28%. The fatty acid amide hydrolase (FAAH) inhibitor phenylmethylsulfonyl fluoride (PMSF) and the anandamide uptake inhibitor AM404 inhibited transmitter release, implying that the antagonist effects were mediated by blockade of endocannabinoid activity. Levels of endocannabinoids (both anandamide and 2-arachidonyl glycerol [2-AG]) in extracts of the cells and cell incubation buffer were increased by PMSF pre-treatment. Depolarization with KCl significantly decreased the amount of anandamide and 2-AG in PMSF-treated CGCs. These results suggest that endogenous cannabinoids inhibit neurotransmitter release in CGCs, which may also release endocannabioids upon neural stimulation.


Assuntos
Canabinoides/farmacologia , Cerebelo/fisiologia , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Ácido Aspártico/metabolismo , Células Cultivadas , Cerebelo/efeitos dos fármacos , Endocanabinoides , Feminino , Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Alcamidas Poli-Insaturadas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
Br J Pharmacol ; 143(2): 251-6, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15289293

RESUMO

Four long-chain, linear fatty acid dopamides (N-acyldopamines) have been identified in nervous bovine and rat tissues. Two unsaturated members of this family of lipids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine, were shown to potently activate the transient receptor potential channel type V1 (TRPV1), also known as the vanilloid receptor type 1 for capsaicin. However, the other two congeners, N-palmitoyl- and N-stearoyl-dopamine (PALDA and STEARDA), are inactive on TRPV1. We have investigated here the possibility that the two compounds act by enhancing the effect of NADA on TRPV1 ('entourage' effect). When pre-incubated for 5 min with cells, both compounds dose-dependently enhanced NADA's TRPV1-mediated effect on intracellular Ca(2+) in human embryonic kidney cells overexpressing the human TRPV1. In the presence of either PALDA or STEARDA (0.1-10 microm), the EC(50) of NADA was lowered from approximately 90 to approximately 30 nm. The effect on intracellular Ca(2+) by another endovanilloid, N-arachidonoyl-ethanolamine (anandamide, 50 nm), was also enhanced dose-dependently by both PALDA and STEARDA. PALDA and STEARDA also acted in synergy with low pH (6.0-6.7) to enhance intracellular Ca(2+) via TRPV1. When co-injected with NADA (0.5 micrograms) in rat hind paws, STEARDA (5 micrograms) potentiated NADA's TRPV1-mediated nociceptive effect by significantly shortening the withdrawal latencies from a radiant heat source. STEARDA (1 and 10 micrograms) also enhanced the nocifensive behavior induced by carrageenan in a typical test of inflammatory pain. These data indicate that, despite their inactivity per se on TRPV1, PALDA and STEARDA may play a role as 'entourage' compounds on chemicophysical agents that interact with these receptors, with possible implications in inflammatory and neuropathic pain.


Assuntos
Dopamina/análogos & derivados , Dopamina/farmacologia , Receptores de Droga/efeitos dos fármacos , Animais , Ácidos Araquidônicos/farmacologia , Cálcio/metabolismo , Carragenina/efeitos adversos , Linhagem Celular , Modelos Animais de Doenças , Dopamina/biossíntese , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Quimioterapia Combinada , Endocanabinoides , Membro Posterior , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Itália , Rim/embriologia , Rim/patologia , Masculino , Medição da Dor/métodos , Palmitatos/farmacologia , Alcamidas Poli-Insaturadas , Ratos , Ratos Sprague-Dawley , Receptores de Droga/genética , Estearatos/farmacologia , Canais de Cátion TRPV
20.
Biochem Pharmacol ; 64(7): 1147-50, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12234618

RESUMO

N-arachidonylglycine (NAGly), the carboxylic analog of the endocannabinoid anandamide, occurs in rat and bovine brain as well as in peripheral sites and shows activity against tonic, formalin-induced pain. It was also observed, using cell membrane preparations, that it inhibits the hydrolytic activity of fatty acid amide hydrolase (FAAH) on anandamide (N-arachidonylethanolamide). These data suggested that it may serve as an endogenous regulator of tissue anandamide concentrations. In this report, we show findings derived from mass spectrometric analyses, indicating that blood levels of anandamide in rats given 10 mg/kg p.o. of NAGly were increased significantly by more than 9-fold when compared with vehicle-treated controls. In vitro evidence in RAW 264.7 cells using a deuterium-labeled NAGly demonstrated that it was not a precursor or source of arachidonic acid for the observed 50% rise in anandamide levels, suggesting that the increase was due to some effect other than increased biosynthesis of anandamide. Moreover, the findings presented here suggest that NAGly can serve as a model for the design of agents to provide pharmacological control of tissue anandamide concentrations.


Assuntos
Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Glicina/farmacologia , Monócitos/efeitos dos fármacos , Animais , Moduladores de Receptores de Canabinoides , Células Cultivadas , Endocanabinoides , Glicina/análogos & derivados , Camundongos , Monócitos/metabolismo , Alcamidas Poli-Insaturadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA