Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 164(4): 770-9, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26830879

RESUMO

T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/metabolismo , Animais , Antígenos CD19/metabolismo , Antígenos de Superfície/imunologia , Efeito Espectador , Comunicação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Mesotelina , Camundongos , Receptores Notch/metabolismo
2.
Cell ; 167(2): 419-432.e16, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693353

RESUMO

Redirecting T cells to attack cancer using engineered chimeric receptors provides powerful new therapeutic capabilities. However, the effectiveness of therapeutic T cells is constrained by the endogenous T cell response: certain facets of natural response programs can be toxic, whereas other responses, such as the ability to overcome tumor immunosuppression, are absent. Thus, the efficacy and safety of therapeutic cells could be improved if we could custom sculpt immune cell responses. Synthetic Notch (synNotch) receptors induce transcriptional activation in response to recognition of user-specified antigens. We show that synNotch receptors can be used to sculpt custom response programs in primary T cells: they can drive a la carte cytokine secretion profiles, biased T cell differentiation, and local delivery of non-native therapeutic payloads, such as antibodies, in response to antigen. SynNotch T cells can thus be used as a general platform to recognize and remodel local microenvironments associated with diverse diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Engenharia Celular , Neoplasias/terapia , Receptores Artificiais/imunologia , Receptores Notch/imunologia , Anticorpos/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citotoxicidade Imunológica , Humanos , Imunoterapia/métodos , Ativação Linfocitária , Receptores Artificiais/genética , Receptores Notch/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Células Th1/imunologia , Transcrição Gênica , Microambiente Tumoral
3.
J Circadian Rhythms ; 18: 7, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33384723

RESUMO

Critical biological processes are under control of the circadian clock. Disruption of this clock, e.g. during aging, results in increased risk for development of chronic disease. Exercise is a protective intervention that elicits changes in both age and circadian pathologies, yet its role in regulating circadian gene expression in peripheral tissues is unknown. We hypothesized that voluntary wheel running would restore disrupted circadian rhythm in aged mice. We analyzed wheel running patterns and expression of circadian regulators in male and female C57Bl/6J mice in adult (~4 months) and old (~18 months) ages. As expected, young female mice ran further than male mice, and old mice ran significantly less than young mice. Older mice of both sexes had a delayed start time in activity which likely points to a disrupted diurnal running pattern and circadian disruption. Voluntary wheel running rescued some circadian dysfunction in older females. This effect was not present in older males, and whether this was due to low wheel running distance or circadian output is not clear and warrants a future study. Overall, we show that voluntary wheel running can rescue some circadian dysfunction in older female but not male mice; and these changes are tissue dependent. While voluntary running was not sufficient to fully rescue age-related changes in circadian rhythm, ongoing studies will determine if forced exercise (e.g. treadmill) and/or chrono-timed exercise can improve age-related cardiovascular, skeletal muscle, and circadian dysfunction.

4.
Nat Chem Biol ; 12(9): 694-701, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27376691

RESUMO

The transcription factor T-box 16 (Tbx16, or Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. However, the mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic. We describe here the use of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identified 124 Tbx16-regulated genes that were expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis and somitogenesis. Unexpectedly, we observed that a loss of Tbx16 function precociously activated posterior hox genes in MPCs, and overexpression of a single posterior hox gene was sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs.


Assuntos
Genes Homeobox/genética , Mesoderma/metabolismo , Células-Tronco/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Mesoderma/citologia , Estrutura Molecular , Células-Tronco/citologia , Proteínas com Domínio T/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
J Cell Physiol ; 230(4): 783-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25205203

RESUMO

GATA-1(low/low) mice have an increase in megakaryocytes (MKs) and trabecular bone. The latter is thought to result from MKs directly stimulating osteoblastic bone formation while simultaneously inhibiting osteoclastogenesis. Osteoprotegerin (OPG) is known to inhibit osteoclastogenesis and OPG(-/-) mice have reduced trabecular and cortical bone due to increased osteoclastogenesis. Interestingly, GATA-1(low/low) mice have increased OPG levels. Here, we sought to determine whether GATA-1 knockdown in OPG(-/-) mice could rescue the observed osteoporotic bone phenotype. GATA-1(low/low) mice were bred with OPG(-/-) mice and bone phenotype assessed. GATA-1(low/low) × OPG(-/-) mice have increased cortical bone porosity, similar to OPG(-/-) mice. Both OPG(-/-) and GATA-1(low/low) × OPG(-/-) mice, were found to have increased osteoclasts localized to cortical bone, possibly producing the observed elevated porosity. Biomechanical assessment indicates that OPG(-/-) and GATA-1(low/low) × OPG(-/-) femurs are weaker and less stiff than C57BL/6 or GATA-1(low/low) femurs. Notably, GATA-1(low/low) × OPG(-/-) mice had trabecular bone parameters that were not different from C57BL/6 values, suggesting that GATA-1 deficiency can partially rescue the trabecular bone loss observed with OPG deficiency. The fact that GATA-1 deficiency appears to be able to partially rescue the trabecular, but not the cortical bone phenotype suggests that MKs can locally enhance trabecular bone volume, but that MK secreted factors cannot access cortical bone sufficiently to inhibit osteoclastogenesis or that OPG itself is required to inhibit osteoclastogenesis in cortical bone.


Assuntos
Fator de Transcrição GATA1/deficiência , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Animais , Reabsorção Óssea/genética , Fêmur/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteogênese/genética , Osteoprotegerina/deficiência
6.
J Am Chem Soc ; 137(23): 7371-8, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25946518

RESUMO

Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd π allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(η(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations.

7.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292959

RESUMO

Zebrafish are an increasingly popular model to study spinal cord injury (SCI) regeneration. The transparency of larval zebrafish makes them ideal to study cellular processes in real time. Standardized approaches, including age of injury, are not readily available making comparisons of the results with other models challenging. In this study, we systematically examined the response to spinal cord transection of larval zebrafish at three different ages (3-7 days post fertilization or dpf) to determine whether the developmental complexity of the central nervous system affects the overall response to SCI. We then used imaging and behavioral analysis to evaluate whether differences existed based on the age of injury. All ages of larval zebrafish upregulated the required genes for glial bridge formation, ctgfa and gfap, at the site of injury, consistent with studies from adult zebrafish. Though all larval ages upregulated factors required to promote glial bridging, young larval zebrafish (3 dpf) were better able to regenerate axons independent of the glial bridge, unlike older zebrafish (7 dpf). Consistent with this data, locomotor experiments demonstrated that some swimming behavior occurs independent of glial bridge formation, further highlighting the need for standardization of this model and recovery assays. Overall, we found subtle cellular differences based on the age of transection in zebrafish, underlining the importance of considering age when designing experiments aimed at understanding regeneration.

8.
Sports Health ; 13(1): 85-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32940548

RESUMO

BACKGROUND: Suspension training systems, which use body weight resistance under unstable conditions, may be effective for muscle strengthening in persons with scapular dyskinesis or subacromial impingement syndrome. HYPOTHESIS: Greater arm, scapular, and trunk muscle recruitment will occur during horizontal abduction row exercises. STUDY DESIGN: Descriptive laboratory study. LEVEL OF EVIDENCE: Level 5. METHODS: Surface electromyography data were collected from 28 participants (14 men, 14 women). A total of 13 right-sided muscles were studied at a sampling frequency of 1000 Hz. Maximal voluntary isometric contractions (MVICs) were established. Participants completed 3 repetitions per exercise in random order. We compared muscle recruitment during 3 rowing exercises: low row, high row, and horizontal abduction row. Data were compared with repeated-measures analyses of variance and post hoc Bonferroni corrections. RESULTS: For high row and horizontal abduction row conditions, the upper, middle, and lower trapezius and posterior deltoid demonstrated >60% MVIC magnitudes of recruitment, and the upper erector spinae demonstrated 40% to 60% MVIC magnitudes of recruitment, respectively. In contrast, in the low row exercise, 40% to 60% MVIC magnitudes of recruitment were observed only in the middle trapezius, latissimus dorsi, and posterior deltoid. CONCLUSION: With the suspension system, high row and horizontal abduction row exercises promote muscle strengthening (>50% MVIC) in the upper, middle, and lower fibers of the trapezius, posterior deltoid, and upper erector spinae. CLINICAL RELEVANCE: Rowing exercises performed with suspension straps may be recommended for muscle strengthening in patients with scapular dyskinesis and subacromial impingement syndrome as well as for healthy persons in need of enhanced scapular muscle performance.


Assuntos
Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Ombro/fisiologia , Esportes Aquáticos/fisiologia , Braço/fisiologia , Cotovelo/fisiologia , Eletromiografia , Feminino , Humanos , Contração Isométrica , Masculino , Treinamento Resistido/instrumentação , Escápula/fisiologia , Escápula/fisiopatologia , Síndrome de Colisão do Ombro/fisiopatologia , Tronco/fisiologia , Adulto Jovem
9.
Dalton Trans ; 45(24): 9770-3, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27240482

RESUMO

In situ formation of heterobimetallic Pt-Ti catalysts enables rapid room temperature catalysis in enyne cycloisomerization reactions. The Lewis acidic titanium atom in the ligand framework is shown to be essential for fast catalysis. A range of enyne substrates are efficiently cyclized to carbocycles and heterocycles in high yield.

10.
ACS Chem Biol ; 10(6): 1466-75, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25781211

RESUMO

In addition to their cell-autonomous roles in mesoderm development, the zebrafish T-box transcription factors no tail a (ntla) and spadetail (spt/tbx16) are required for medial floor plate (MFP) formation. Posterior MFP cells are completely absent in zebrafish embryos lacking both Ntla and Spt function, and genetic mosaic analyses have shown that the two T-box genes promote MFP development in a non-cell-autonomous manner. On the basis of these observations, it has been proposed that Ntla/Spt-dependent mesoderm-derived signals are required for the induction of posterior but not anterior MFP cells. To investigate the mechanisms by which Ntla and Spt regulate MFP development, we have used photoactivatable caged morpholinos (cMOs) to silence these T-box genes with spatiotemporal control. We find that posterior MFP formation requires Ntla or Spt activity during early gastrulation, specifically in lateral margin-derived cells that converge toward the midline during epiboly and somitogenesis. Nodal signaling-dependent MFP specification is maintained in the absence of Ntla and Spt function; however, midline cells in ntla;spt morphants exhibit aberrant morphogenetic movements, resulting in their anterior mislocalization. Our findings indicate that Ntla and Spt do not differentially regulate MFP induction along the anterior-posterior axis; rather, the T-box genes act redundantly within margin-derived cells to promote the posterior extension of MFP progenitors.


Assuntos
Proteínas Fetais/genética , Sondas Moleculares/química , Morfolinos/química , Proteínas com Domínio T/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Embrião não Mamífero , Proteínas Fetais/química , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Luz , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese/genética , Processos Fotoquímicos , Transdução de Sinais , Proteínas com Domínio T/química , Proteínas com Domínio T/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
11.
Org Lett ; 17(3): 752-5, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25612096

RESUMO

Phosphinoamide-scaffolded heterobimetallic palladium-titanium complexes are highly effective catalysts for allylic aminations of allylic chlorides with hindered secondary amine nucleophiles. Three titanium-containing ligands are shown to assemble active catalysts in situ and enable catalysis at room temperature. A variety of sterically bulky secondary amines are efficiently allylated in high yields with as little as 1 mol % palladium catalyst. Piperidine and pyrrolidine products are also efficiently generated via intramolecular aminations with hindered amine nucleophiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA