Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7890): 701-706, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673755

RESUMO

Following severe adverse reactions to the AstraZeneca ChAdOx1-S-nCoV-19 vaccine1,2, European health authorities recommended that patients under the age of 55 years who received one dose of ChAdOx1-S-nCoV-19 receive a second dose of the Pfizer BNT162b2 vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here we show that the heterologous ChAdOx1-S-nCoV-19 and BNT162b2 combination confers better protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection than the homologous BNT162b2 and BNT162b2 combination in a real-world observational study of healthcare workers (n = 13,121). To understand the underlying mechanism, we conducted a longitudinal survey of the anti-spike immunity conferred by each vaccine combination. Both combinations induced strong anti-spike antibody responses, but sera from heterologous vaccinated individuals displayed a stronger neutralizing activity regardless of the SARS-CoV-2 variant. This enhanced neutralizing potential correlated with increased frequencies of switched and activated memory B cells that recognize the SARS-CoV-2 receptor binding domain. The ChAdOx1-S-nCoV-19 vaccine induced a weaker IgG response but a stronger T cell response than the BNT162b2 vaccine after the priming dose, which could explain the complementarity of both vaccines when used in combination. The heterologous vaccination regimen could therefore be particularly suitable for immunocompromised individuals.


Assuntos
Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/administração & dosagem , ChAdOx1 nCoV-19/imunologia , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , França/epidemiologia , Hospitais Universitários , Humanos , Memória Imunológica/imunologia , Incidência , Masculino , Células B de Memória/imunologia , Células T de Memória/imunologia , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Nat Immunol ; 15(8): 749-757, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973821

RESUMO

Interleukin 15 (IL-15) controls both the homeostasis and the peripheral activation of natural killer (NK) cells. The molecular basis for this duality of action remains unknown. Here we found that the metabolic checkpoint kinase mTOR was activated and boosted bioenergetic metabolism after exposure of NK cells to high concentrations of IL-15, whereas low doses of IL-15 triggered only phosphorylation of the transcription factor STAT5. mTOR stimulated the growth and nutrient uptake of NK cells and positively fed back on the receptor for IL-15. This process was essential for sustaining NK cell proliferation during development and the acquisition of cytolytic potential during inflammation or viral infection. The mTORC1 inhibitor rapamycin inhibited NK cell cytotoxicity both in mice and humans; this probably contributes to the immunosuppressive activity of this drug in different clinical settings.


Assuntos
Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Proliferação de Células , Células Cultivadas , Infecções por Herpesviridae/imunologia , Humanos , Imunossupressores/farmacologia , Inflamação/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Células Matadoras Naturais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Muromegalovirus/imunologia , Infecções por Orthomyxoviridae/imunologia , Poli I-C/imunologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
3.
Blood ; 144(12): 1271-1283, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38875515

RESUMO

ABSTRACT: The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.


Assuntos
Adesão Celular , Células Matadoras Naturais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Prognóstico , Feminino , Masculino , Citotoxicidade Imunológica , Antígenos de Diferenciação de Linfócitos T/metabolismo , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores de IgG , Proteínas Ligadas por GPI
4.
Eur J Immunol ; : e2350954, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837415

RESUMO

Hexokinases (HKs) control the first step of glucose catabolism. A switch of expression from liver HK (glucokinase, GCK) to the tumor isoenzyme HK2 is observed in hepatocellular carcinoma progression. Our prior work revealed that HK isoenzyme switch in hepatocytes not only regulates hepatic metabolic functions but also modulates innate immunity and sensitivity to Natural Killer (NK) cell cytotoxicity. This study investigates the impact of HK2 expression and its mitochondrial binding on the resistance of human liver cancer cells to NK-cell-induced cytolysis. We have shown that HK2 expression induces resistance to NK cell cytotoxicity in a process requiring mitochondrial binding of HK2. Neither HK2 nor GCK expression affects target cells' ability to activate NK cells. In contrast, mitochondrial binding of HK2 reduces effector caspase 3/7 activity both at baseline and upon NK-cell activation. Furthermore, HK2 tethering to mitochondria enhances their resistance to cytochrome c release triggered by tBID. These findings indicate that HK2 mitochondrial binding in liver cancer cells is an intrinsic resistance factor to cytolysis and an escape mechanism from immune surveillance.

5.
Eur J Immunol ; 54(7): e2451035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627984

RESUMO

OBJECTIVES: In the post-SARS-CoV-2 pandemic era, "breakthrough infections" are still documented, due to variants of concerns (VoCs) emergence and waning humoral immunity. Despite widespread utilization, the definition of the anti-Spike (S) immunoglobulin-G (IgG) threshold to define protection has unveiled several limitations. Here, we explore the advantages of incorporating T-cell response assessment to enhance the definition of immune memory profile. METHODS: SARS-CoV-2 interferon-gamma release assay test (IGRA) was performed on samples collected longitudinally from immunocompetent healthcare workers throughout their immunization by infection and/or vaccination, anti-receptor-binding domain IgG levels were assessed in parallel. The risk of symptomatic infection according to cellular/humoral immune capacities during Omicron BA.1 wave was then estimated. RESULTS: Close to 40% of our samples were exclusively IGRA-positive, largely due to time elapsed since their last immunization. This suggests that individuals have sustained long-lasting cellular immunity, while they would have been classified as lacking protective immunity based solely on IgG threshold. Moreover, the Cox regression model highlighted that Omicron BA.1 circulation raises the risk of symptomatic infection while increased anti-receptor-binding domain IgG and IGRA levels tended to reduce it. CONCLUSION: The discrepancy between humoral and cellular responses highlights the significance of assessing the overall adaptive immune response. This integrated approach allows the identification of vulnerable subjects and can be of interest to guide antiviral prophylaxis at an individual level.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunidade Humoral , Imunoglobulina G , Memória Imunológica , Testes de Liberação de Interferon-gama , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Memória Imunológica/imunologia , Imunidade Humoral/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Testes de Liberação de Interferon-gama/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos T/imunologia , Pessoal de Saúde , Vacinas contra COVID-19/imunologia
6.
Immunity ; 45(2): 428-41, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27496734

RESUMO

Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production.


Assuntos
Tecido Adiposo/imunologia , Resistência à Insulina/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Proteínas com Domínio T/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/metabolismo , Proteínas com Domínio T/genética
7.
J Immunol ; 210(9): 1209-1221, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36961448

RESUMO

Autosomal recessive PRKCD deficiency has previously been associated with the development of systemic lupus erythematosus in human patients, but the mechanisms underlying autoimmunity remain poorly understood. We introduced the Prkcd G510S mutation that we previously associated to a Mendelian cause of systemic lupus erythematosus in the mouse genome, using CRISPR-Cas9 gene editing. PrkcdG510S/G510S mice recapitulated the human phenotype and had reduced lifespan. We demonstrate that this phenotype is linked to a B cell-autonomous role of Prkcd. A detailed analysis of B cell activation in PrkcdG510S/G510S mice shows an upregulation of the PI3K/mTOR pathway after the engagement of the BCR in these cells, leading to lymphoproliferation. Treatment of mice with rapamycin, an mTORC1 inhibitor, significantly improves autoimmune symptoms, demonstrating in vivo the deleterious effect of mTOR pathway activation in PrkcdG510S/G510S mice. Additional defects in PrkcdG510S/G510S mice include a decrease in peripheral mature NK cells that might contribute to the known susceptibility to viral infections of patients with PRKCD mutations.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Linfócitos B , Proliferação de Células
8.
Artigo em Inglês | MEDLINE | ID: mdl-38977084

RESUMO

BACKGROUND: DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has an essential role in the non-homologous end-joining pathway that repairs DNA double-strand breaks in V(D)J recombination involved in the expression of T- and B-cell receptors. Whereas homozygous mutations in Prkdc define the Scid mouse, a model that has been widely used in biology, human mutations in PRKDC are extremely rare and the disease spectrum has not been described so far. OBJECTIVES: To provide an update on the genetics, clinical spectrum, immunological profile, and therapy of DNA-PKcs deficiency in human. METHODS: The clinical, biological, and treatment data from the 6 cases published to date and from 1 new patient were obtained and analyzed. Rubella PCR was performed on available granuloma material. RESULTS: We report on 7 patients; 6 patients displayed the autosomal recessive p.L3062R mutation in PRKDC-encoding DNA-PKcs. Atypical severe combined immunodeficiency with inflammatory lesions, granulomas, and autoimmunity was the predominant clinical manifestation (n = 5 of 7). Rubella viral strain was detected in the granuloma of 1 patient over the 2 tested. T-cell counts, including naive CD4+CD45RA+ T cells and T-cell function were low at diagnosis for 6 patients. For most patients with available values, naive CD4+CD45RA+ T cells decreased over time (n = 5 of 6). Hematopoietic stem cell transplantation was performed in 5 patients, of whom 4 are still alive without transplant-related morbidity. Sustained T- and B-cell reconstitution was observed, respectively, for 4 and 3 patients, after a median follow-up of 8 years (range 3-16 years). CONCLUSIONS: DNA-PKcs deficiency mainly manifests as an inflammatory disease with granuloma and autoimmune features, along with severe infections.

9.
J Immunol ; 208(7): 1802-1812, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35288470

RESUMO

NK cell receptors allow NK cells to recognize targets such as tumor cells. Many of them are expressed on a subset of NK cells, independently of each other, which creates a vast diversity of receptor combinations. Whether these combinations influence NK cell antitumor responses is not well understood. We addressed this question in the C57BL/6 mouse model and analyzed the individual effector response of 444 mouse NK cell subsets, defined by combinations of 12 receptors, against tumor cell lines originating from different tissues and mouse strains. We found a wide range of reactivity among NK subsets, but the same hierarchy of responses was observed for the different tumor types, showing that the repertoire of NK cell receptors does not encode for different tumor specificities but for different intrinsic reactivities. The coexpression of CD27, NKG2A, and DNAM-1 identified subsets with relative cytotoxic specialization, whereas reciprocally, CD11b and KLRG1 defined the best IFN-γ producers. The expression of educating receptors Ly49C, Ly49I, and NKG2A was also strongly correlated with IFN-γ production, but this effect was suppressed by unengaged receptors Ly49A, Ly49F, and Ly49G2. Finally, IL-15 coordinated NK cell effector functions, but education and unbound inhibitory receptors retained some influence on their response. Collectively, these data refine our understanding of the mechanisms governing NK cell reactivity, which could help design new NK cell therapy protocols.


Assuntos
Interferon gama , Células Matadoras Naturais , Animais , Linhagem Celular Tumoral , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Células Matadoras Naturais/metabolismo
10.
Bioessays ; 44(3): e2100281, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023197

RESUMO

T-bet and Eomes are two related transcription factors (TFs) that regulate the differentiation of cytotoxic lymphocytes such as Natural Killer (NK) cells and CD8 T cells. Recent genome-wide analyses suggest they have complementary roles in instructing the transcriptional program of NK cells, although their DNA binding sites appear to be very similar. In this essay, we discuss the mechanisms that could specify their action, addressing their expression profile, the cofactors they interact with, as well as their roles in the epigenetic regulation of chromatin accessibility. Based on the recent literature on these TFs, we propose different models to describe how they regulate gene expression in NK cells at steady state, or in the context of activation or exhaustion. We also discuss recent findings in the field of CD8 T cell differentiation and residency, where Eomes and T-bet appear to be major regulators, and the parallels that can be drawn between mechanisms of NK and CD8 T cell differentiation and trafficking.


Assuntos
Epigênese Genética , Proteínas com Domínio T , Diferenciação Celular , Estudo de Associação Genômica Ampla , Células Matadoras Naturais/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
11.
J Immunol ; 206(10): 2265-2270, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33931486

RESUMO

NK cells are cytotoxic lymphocytes displaying strong antimetastatic activity. Mouse models and in vitro studies suggest a prominent role of the mechanistic target of rapamycin (mTOR) kinase in the control of NK cell homeostasis and antitumor functions. However, mTOR inhibitors are used as chemotherapies in several cancer settings. The impact of such treatments on patients' NK cells is unknown. We thus performed immunophenotyping of circulating NK cells from metastatic breast cancer patients treated with the mTOR inhibitor everolimus over a three-month period. Everolimus treatment resulted in inhibition of mTORC1 activity in peripheral NK cells, whereas mTORC2 activity was preserved. NK cell homeostasis was profoundly altered with a contraction of the NK cell pool and an overall decrease in their maturation. Phenotype and function of the remaining NK cell population was less affected. This is, to our knowledge, the first in vivo characterization of the role of mTOR in human NK cells.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Everolimo/administração & dosagem , Células Matadoras Naturais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Seguimentos , França/epidemiologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento
12.
Euro Surveill ; 28(15)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37052679

RESUMO

BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Assuntos
COVID-19 , Vacinas , Humanos , Anticorpos Antivirais , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , França/epidemiologia , Estudos Prospectivos , SARS-CoV-2 , Vacinação
13.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628917

RESUMO

CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Ciclo Celular , Citocinas
14.
J Clin Immunol ; 42(6): 1310-1320, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670985

RESUMO

BACKGROUND: Deoxyribonuclease 1 like 3 (DNASE1L3) is a secreted enzyme that has been shown to digest the extracellular chromatin derived from apoptotic bodies, and DNASE1L3 pathogenic variants have been associated with a lupus phenotype. It is unclear whether interferon signaling is sustained in DNASE1L3 deficiency in humans. OBJECTIVES: To explore interferon signaling in DNASE1L3 deficient patients. To depict the characteristic features of DNASE1L3 deficiencies in human. METHODS: We identified, characterized, and analyzed five new patients carrying biallelic DNASE1L3 variations. Whole or targeted exome and/or Sanger sequencing was performed to detect pathogenic variations in five juvenile systemic erythematosus lupus (jSLE) patients. We measured interferon-stimulated gene (ISG) expression in all patients. We performed a systematic review of all published cases available from its first description in 2011 to March 24th 2022. RESULTS: We identified five new patients carrying biallelic DNASE1L3 pathogenic variations, including three previously unreported mutations. Contrary to canonical type I interferonopathies, we noticed a transient increase of ISGs in blood, which returned to normal with disease remission. Disease in one patient was characterized by lupus nephritis and skin lesions, while four others exhibited hypocomplementemic urticarial vasculitis syndrome. The fourth patient presented also with early-onset inflammatory bowel disease. Reviewing previous reports, we identified 35 additional patients with DNASE1L3 deficiency which was associated with a significant risk of lupus nephritis and a poor outcome together with the presence of anti-neutrophil cytoplasmic antibodies (ANCA). Lung lesions were reported in 6/35 patients. CONCLUSIONS: DNASE1L3 deficiencies are associated with a broad phenotype including frequently lupus nephritis and hypocomplementemic urticarial vasculitis with positive ANCA and rarely, alveolar hemorrhages and inflammatory bowel disease. This report shows that interferon production is transient contrary to anomalies of intracellular DNA sensing and signaling observed in Aicardi-Goutières syndrome or STING-associated vasculitis in infancy (SAVI).


Assuntos
Endodesoxirribonucleases , Doenças Inflamatórias Intestinais , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Vasculite , Anticorpos Anticitoplasma de Neutrófilos/genética , Cromatina , DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Interferon Tipo I/genética , Interferons , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/diagnóstico , Nefrite Lúpica/genética , Fenótipo , Vasculite/diagnóstico
17.
Eur J Immunol ; 49(1): 38-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536524

RESUMO

Eomesodermin (Eomes) is a transcription factor (TF) of the T-box family closely related to T-bet known for its role in CD8 T cell and natural killer cell differentiation. However, the role of Eomes in CD4 T-cell differentiation is less well appreciated. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2019. 49: 79-95] Mazzoni et al. and [Eur. J. Immunol. 2019. 49: 96-111] Gruarin et al. studied the role of Eomes in human CD4 T-cell differentiation. Mazzoni et al. showed that Eomes plays a key role in helper T cell (Th) plasticity by favoring the phenotype shift of Th17 cells toward non-classic Th1 cells; while Gruarin et al. proposed Eomes as a lineage-defining TF for human IL-10 and IFN-γ co-producing regulatory T-cells (Tr1 cells). Both studies show that Eomes drives IFN-γ secretion and stamps a "cytotoxic" signature, while it also represses Th17 features. However, additional signals including the cytokine milieu may further influence the fate of Eomes+ CD4 T cells. A common feature of Eomes+ CD4 T cells appears to be their accumulation in inflamed tissues in patients with chronic inflammatory disorders. Whether Eomes favors expression of the proinflammatory cytokines or on the contrary, promotes the anti-inflammatory cytokines, remains a matter of debate.


Assuntos
Células Th1 , Células Th17 , Linfócitos T CD4-Positivos , Diferenciação Celular , Humanos , Inflamação , Interferon gama , Proteínas com Domínio T
18.
Eur J Immunol ; 49(5): 686-693, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758858

RESUMO

Innate T cells, NK cells, and innate-like lymphocytes (ILCs) share transcriptional signatures that translate into overlapping developmental and functional programs. A prominent example for genes that are highly expressed in NK cells but not in ILCs is serine-threonine-tyrosine kinase 1 (Styk1 encoded by Styk1). We found Styk1 to be specifically expressed in lymphocytes positive for Killer cell lectin-like receptor subfamily B, member 1, also known as CD161 or NK1.1, i.e. in NK cell, αß iNKT, and γδ NKT cell lineages. To investigate the role of Styk1 in the development and function of NK1.1+ innate T-cell subsets, we generated and analyzed a novel Styk1null mutant mouse line. Furthermore, we validated Styk1 expression in γδ NKT cells and in thymic, but not in peripheral invariant αß iNKT cells through ex vivo analysis of a concomitantly generated transgenic Styk1 reporter mouse line. Despite the very specific expression of Styk1 in NK cells, γδ NKT cells, and thymic αß iNKT, its absence did not alter homeostasis and function of these lineages. Thus, Styk1 expression is specific for NK cells and selected NK-like innate T-cell subsets, but dispensable for their development and function.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores , Expressão Gênica , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Receptores Proteína Tirosina Quinases/metabolismo
19.
Eur J Immunol ; 49(5): 677-685, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690705

RESUMO

To gain insight into the biology of NK cells, others and we previously identified the NK-cell signature, defined as the set of transcripts which expression is highly enriched in these cells compared to other immune subtypes. The transcript encoding the Serine/threonine/tyrosine kinase 1 (Styk1) is part of this signature. However, the role of Styk1 in the immune system is unknown. Here, we report the generation of a novel transgenic mouse model, in which Styk1 expression is invalidated and replaced by an EGFP reporter cassette. We demonstrated that Styk1 expression is a hallmark of NK cells and other NK1.1 expressing cells such as liver type 1 innate lymphoid cells (ILC1) and NK1.1+ γδ T cells. Styk1 expression is maintained by IL-15 in NK cells and negatively correlates with the expression of educating NK-cell receptors. Analysis of phosphorylation levels of mTOR substrates suggested that Styk1 could moderately contribute to the activity of the PI3K/Akt/mTOR pathway. However, Styk1-deficient NK cells develop normally and have normal in vitro and in vivo effector functions. Thus Styk1 expression is a hallmark of NK cells, ILC1 and NK1.1+ T cells but is dispensable for their development and immune functions.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Expressão Gênica , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , Receptores Proteína Tirosina Quinases/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
PLoS Pathog ; 14(8): e1007158, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089163

RESUMO

Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1ß is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1ß. Yet, upon expression of the viral early genes, IL-1ß transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1ß promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1ß. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1ß regulation.


Assuntos
Regulação da Expressão Gênica/imunologia , Evasão da Resposta Imune/imunologia , Fatores Reguladores de Interferon/metabolismo , Interleucina-1beta/biossíntese , Infecções por Papillomavirus/imunologia , Papillomavirus Humano 16/imunologia , Humanos , Fatores Reguladores de Interferon/imunologia , Interleucina-1beta/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA