RESUMO
Reversible Pickering emulsions, achieved by switchable, interfacially active colloidal particles, that enable on-demand emulsification/demulsification or phase inversion, hold substantial promise for biphasic catalysis, emulsion polymerization, cutting fluids, and crude oil pipeline transportation. However, particles with such a responsive behavior usually require complex chemical syntheses and surface modifications, limiting their extensive use. Herein, we report a simple route to generate emulsions that can be controlled and reversibly undergo phase inversion. The emulsions are prepared and stabilized by the interfacial assembly of polyoxometalate (POM)-polymer, where their electrostatic interaction at the interface is dynamic. The wettability of the POMs that dictates the emulsion type can be readily regulated by tuning the number of polymer chains bound to POMs, which, in turn, can be controlled by varying the concentrations of both components and the water/oil ratio. In addition, the number of polymer chains anchored to the POMs can be varied by controlling the number of negative charges on the POMs through an in situ redox reaction. As such, a reversible inversion of the emulsions can be triggered by switching between exposure to ultraviolet light and the introduction of oxygen. Combining the functions of POM itself, a cyclic interfacial catalysis system was realized. Inversion of the emulsion also affords a pathway to high-internal-phase emulsions. The diversity of the POMs, the polymers, and the responsive switching groups open numerous new, simple strategies for designing a wide range of responsive soft matter for cargo loading, controlled release, and delivery in biomedical and engineering applications without time-consuming particle syntheses.
RESUMO
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
RESUMO
Structural colors particularly of the angle-independent category stemming from wavelength-dependent light scattering have aroused increasing interest due to their considerable applications spanning displays and sensors to detection. Nevertheless, these colors would be heavily altered and even disappear during practical applications, which is related with the variation of refractive index mismatch by liquid wetting/infiltrating. Inspired by bird feathers, we propose a simple deposition toward the coating with angle-independent structural color and superamphiphobicity. The coating is composed of â¼200 nm-sized channel-type structures between hollow silica and air nanostructures, exhibiting a robust sapphire blue color independent of intense liquid intrusion, which duplicates the characteristics of the back feather of Eastern Bluebird. A high color saturation and superamphiphobicity of the biomimetic coating are optimized by manipulating the coating parameters or adding black substances. Excellent durability under harsh conditions endows the coating with long-term service life in various extreme environments.
RESUMO
Responsive nanoparticle surfactants (NPSs) can dynamically and reversibly modulate the interfacial interactions between incompatible components, which are essential in the interfacial catalysis, corrosion, and self-assembly of block copolymers (BCPs). However, NPSs with stimuli-responsive behavior often involve tedious chemical synthesis and surface modifications. Herein, we propose a strategy to in situ construct a kind of dynamic and reversible NPSs by the interfacial electrostatic interaction between the negatively charged nanoparticles (NPs) and the positively charged homopolymers. The NPSs assembled at the oil/water interface reduce the interfacial tension and direct the confined assembly of BCP. Meanwhile, the dynamic NPSs can be disassembled by increasing the pH value or introducing competitive electrostatic attractions, which can dynamically and reversibly change the interfacial properties as well as the alignment of polymer chains, enabling BCP microparticles with reversibly switchable lamellar and cylindrical structures. Furthermore, by the introduction of aggregation-induced emission luminogens as tails to the NPSs, the reversible transformation of BCP microparticles can be visualized by fluorescence emission, which is dependent on the nanostructures of microparticles. This work establishes a concept for dynamically manipulating interfacial interactions and reversibly switching BCP microparticles without time-consuming NPS synthesis, showing promising applications in the fabrication of smart materials with switchable structures and properties.
RESUMO
PURPOSE: Cancer patients usually need frequent hospitalization for diagnosis and treatment. However, the unprecedented outbreak of the Omicron wave in Shanghai pressured local communities and hospitals to enforce strict control measures. This qualitative study aimed to investigate cancer family caregivers' experiences of navigating the pre-hospital system during the lockdown in Shanghai. METHOD: This is a substudy of a larger study investigating the experience of 20 caregivers of hospitalized cancer patients during the lockdown in Shanghai. This study was based on findings from a subset of 14 semi-structured face-to-face interviews with cancer family caregivers. Inductive thematic analysis was used to analyze the data. RESULTS: The outbreak of the epidemic and lockdown measures created additional challenges for caregivers, which extended beyond their daily concerns. Uncertainties of the situation, risks of infection, and income loss, along with the strict restrictions in their community and hospitals, added to their burden and compromised their abilities to seek help for their significant others. Yet, in an attempt to reduce undue concern and worry, caregivers were eventually allowed to accompany their family member to the hospital using reliable information, and telemedicine techniques based on an updated governmental policy governing access to care and support for cancer patients. CONCLUSIONS: The lockdown in Shanghai significantly affected cancer family caregivers' experience navigating the pre-hospital system. Policy support for cancer care, reliable information, and telemedicine techniques have been identified as essential facilitators of improved access to cancer care.
Assuntos
COVID-19 , Neoplasias , Humanos , Cuidadores , China , Controle de Doenças Transmissíveis , Hospitais , Família , Neoplasias/diagnóstico , Neoplasias/terapia , Pesquisa Qualitativa , Teste para COVID-19RESUMO
Janus particles, having the property integration of each component, have attracted increasing attention due to their considerable potential in the field of material engineering applications. However, organic solvents or sophisticated equipment during the fabrication processes is generally inevitable. Here, we report a facile route to prepare Janus droplets and hydrogels via aqueous two-phase systems (ATPS). Simply merging two polymers, i.e., polyethylene glycol (PEG) and dextran (DEX), as aqueous droplets on a superamphiphobic surface leads to phase separation, provided that their concentrations exceed the threshold in the mixed aqueous droplets, thus generating a Janus structure. Various morphologies of such Janus droplets can be well controlled by manipulating the locations of these two polymers' concentration on the phase diagram, and the evolution of the mixed droplets are deterministic on the basis of the kinetics of their phase separation and the degree of hydrophobicity of the substrate. Introducing monomers and/or nanoparticles, further, into a certain phase of the ATPS droplet followed by photopolymerizing enables Janus hydrogel particles with diverse functionalities to be obtained. The ease and green techniques with which the Janus balance and curvature between two phases of the Janus droplet can be finely tuned point to new directions in designing Janus particles and hold great promises in biological engineering.
RESUMO
Background: Hashimoto's thyroiditis, an autoimmune thyroid disease, shows high morbidity worldwide, particularly in female. Patients with Hashimoto's thyroiditis have an increasing risk of hypothyroidism during the occurrence and progression of Hashimoto's thyroiditis. In recent years, metabolomics has been widely applied in autoimmune diseases, especially thyroid disorders. However, metabolites analysis in Hashimoto's thyroiditis is still absent. Methods: A total of 92 samples were collected, including 35 cases in the control group, 30 cases in the Hashimoto's thyroiditis with euthyroidism group, and 27 cases in the Hashimoto's thyroiditis with subclinical hypothyroidism group. SPSS 25.0 for statistical analysis and ROC curve, SIMCA 14.0, Metaboanalysis for multifactor analysis, and Origin 2021 for correlation analysis. Results: 21 metabolites were identified. 10 metabolites were obtained from control group versus HTE group, 8 serum metabolites were abnormal between control group and HTS group, 3 metabolites were derived from HTE group versus HTS. Kyoto Encyclopedia of Genes and Genomes Enrichment analysis showed that fatty acid degradation, Arginine, and proline metabolism have a significant impact on HTE, while lysine degradation, tyrosine metabolism play an important role HTS group, compared to control group. In the comparison between the HTE and HTS group, Valine, leucine, and isoleucine degradation and Valine, leucine, and isoleucine biosynthesis exists a key role. Correlation analysis shows clinical are not related to metabolites. ROC curve indicates SM, LPC, PC can efficiency in identification patients with HT in different clinical stage from healthy individuals. Conclusion: Serum metabolites were changed in HT. Phospholipids such as SM, LPC, PC influence the pathogenesis of Hashimoto's thyroiditis. Fatty acid degradation and lysine degradation pathways have an impact on different clinical stage of HT.