Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Am Chem Soc ; 145(19): 10564-10575, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130240

RESUMO

Boron-based nonmetallic materials (such as B2O3 and BN) emerge as promising catalysts for selective oxidation of light alkanes by O2 to form value-added products, resulting from their unique advantage in suppressing CO2 formation. However, the site requirements and reaction mechanism of these boron-based catalysts are still in vigorous debate, especially for methane (the most stable and abundant alkane). Here, we show that hexagonal BN (h-BN) exhibits high selectivities to formaldehyde and CO in catalyzing aerobic oxidation of methane, similar to Al2O3-supported B2O3 catalysts, while h-BN requires an extra induction period to reach a steady state. According to various structural characterizations, we find that active boron oxide species are gradually formed in situ on the surface of h-BN, which accounts for the observed induction period. Unexpectedly, kinetic studies on the effects of void space, catalyst loading, and methane conversion all indicate that h-BN merely acts as a radical generator to induce gas-phase radical reactions of methane oxidation, in contrast to the predominant surface reactions on B2O3/Al2O3 catalysts. Consequently, a revised kinetic model is developed to accurately describe the gas-phase radical feature of methane oxidation over h-BN. With the aid of in situ synchrotron vacuum ultraviolet photoionization mass spectroscopy, the methyl radical (CH3•) is further verified as the primary reactive species that triggers the gas-phase methane oxidation network. Theoretical calculations elucidate that the moderate H-abstraction ability of predominant CH3• and CH3OO• radicals renders an easier control of the methane oxidation selectivity compared to other oxygen-containing radicals generally proposed for such processes, bringing deeper understanding of the excellent anti-overoxidation ability of boron-based catalysts.

2.
ChemSusChem ; 17(15): e202301881, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467567

RESUMO

Conversion of CO2 into high-value chemicals using solar energy is one of promising approaches to achieve carbon neutrality. However, the oxidation of water in the photocatalytic CO2 reduction is kinetically unfavorable due to multi-electron and proton transfer processes, along with the difficulty in generating O-O bonds. To tackle these challenges, this study investigated the coupling reaction of photocatalytic CO2 reduction and selective propane oxidation using the Pd/P25 (1 wt%) catalyst. Our findings reveal a significant improvement in CO2 reduction, nearly fivefold higher, achieved by substituting water oxidation with selective propane oxidation. This substitution not only accelerates the process of CO2 reduction but also yields valuable propylene. The relative ease of propane oxidation, compared to water, appears to increase the density of photogenerated electrons, ultimately enhancing the efficiency of CO2 reduction. We further found that hydroxyl radicals and reduced intermediate (carboxylate species) played important roles in the photocatalytic reaction. These findings not only propose a potential approach for the efficient utilization of CO2 through the coupling of selective propane oxidation into propylene, but also provide insights into the mechanistic understanding of the coupling reaction.

3.
Nat Commun ; 15(1): 1234, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336891

RESUMO

Identification of active sites in catalytic materials is important and helps establish approaches to the precise design of catalysts for achieving high reactivity. Generally, active sites of conventional heterogeneous catalysts can be single atom, nanoparticle or a metal/oxide interface. Herein, we report that metal/oxide reverse interfaces can also be active sites which are created from the coordinated migration of metal and oxide atoms. As an example, a Pd1/CeO2 single-atom catalyst prepared via atom trapping, which is otherwise inactive at 30 °C, is able to completely oxidize formaldehyde after steam treatment. The enhanced reactivity is due to the formation of a Ce2O3-Pd nanoparticle domain interface, which is generated by the migration of both Ce and Pd atoms on the atom-trapped Pd1/CeO2 catalyst during steam treatment. We show that the generation of metal oxide-metal interfaces can be achieved in other heterogeneous catalysts due to the coordinated mobility of metal and oxide atoms, demonstrating the formation of a new active interface when using metal single-atom material as catalyst precursor.

4.
Nat Commun ; 14(1): 7705, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001068

RESUMO

The direct oxidation of methane to methanol (MTM) remains a significant challenge in heterogeneous catalysis due to the high dissociation energy of the C-H bond in methane and the high desorption energy of methanol. In this work, we demonstrate a breakthrough in selective MTM by achieving a high methanol space-time yield of 2678 mmol molCu-1 h-1 with 93% selectivity in a continuous methane-steam reaction at 400 °C. The superior performance is attributed to the confinement effect of 6-membered ring (6MR) voids in SSZ-13 zeolite, which host isolated Cu-OH single sites. Our results provide a deeper understanding of the role of Cu-zeolites in continuous methane-steam to methanol conversion and pave the way for further improvement.

5.
ChemSusChem ; 15(7): e202102494, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35049142

RESUMO

Volatile organic compounds (VOCs) are detrimental to the environment and human health and must be eliminated before discharging. Oxidation by heterogeneous catalysts is one of the most promising approaches for the VOCs abatement. Precious metal catalysts are highly active for the catalytic oxidation of VOCs, but they are rare and their high price limits large-scale application. Supported metal single-atom catalysts (SACs) have a high atom efficiency and provide the possibility to circumvent such limitations. This Review summarizes recent advances in the use of metal SACs for the complete oxidation of VOCs, such as benzene, toluene, formaldehyde, and methanol, as well as aliphatic and Cl- and S-containing hydrocarbons. The structures of the metal SACs used and the reaction mechanisms of the VOC oxidation are discussed. The most widely used SACs are noble metals supported on oxides, especially on reducible oxides, such as Mn2 O3 and TiO2 . The reactivity of most SACs is related to the activity of surface lattice oxygen of the oxides. Furthermore, several metal SACs show better reactivity and improved S and Cl resistance than the corresponding nanocatalysts, indicating that SACs have potential for application in the oxidation of VOCs. The deactivation and regeneration mechanisms of the metal SACs are also summarized. It is concluded that the application of metal SACs in catalytic oxidation of VOCs is still in its infancy. This Review aims to elucidate structure-performance relationships and to guide the design of highly efficient metal SACs for the catalytic oxidation of VOCs.


Assuntos
Compostos Orgânicos Voláteis , Catálise , Humanos , Metais , Oxirredução , Óxidos/química , Compostos Orgânicos Voláteis/química
6.
Front Chem ; 10: 944552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910739

RESUMO

The thermocatalytic conversion of hexose into valuable chemicals such as methyl lactate under mild conditions is very appealing. Here, we report that Mo, Mg co-modified Sn-ß catalyst can effectively catalyze the transformation of glucose and fructose into alkyl lactate at moderate temperatures. A maximum yield of around 35% of methyl lactate was achieved from the conversion of glucose in methanol at 100°C over Sn-ß catalyst modified with 3 wt% Mo and 0.5 wt% Mg. However, up to 82.8% yield of ethyl lactate was obtained in the case of fructose in ethanol upon the same catalytic condition, suggesting a significant solvent effect. The Mo species plays a key role to enable the retro-aldol condensation of fructose, in which the competing side reactions are significantly suppressed with the assistance of neighboring Mg species probably through a synergetic effect of Lewis acid-base.

7.
ChemSusChem ; 15(7): e202200356, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35303399

RESUMO

Invited for this month's cover is the group of Haifeng Xiong at Xiamen University. The image shows that single-atom catalysts can work in the catalytic oxidation of volatile organic compounds. The Review itself is available at 10.1002/cssc.202102494.

8.
JACS Au ; 2(7): 1651-1660, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911462

RESUMO

The development of highly efficient catalysts for room-temperature formaldehyde (HCHO) oxidation is of great interest for indoor air purification. In this work, it was found that the single-atom Pt1/CeO2 catalyst exhibits a remarkable activity with complete removal of HCHO even at 288 K. Combining density functional theory calculations and in situ DRIFTS experiments, it was revealed that the active OlatticeH site generated on CeO2 in the vicinity of Pt2+ via steam treatment plays a key role in the oxidation of HCHO to formate and its further oxidation to CO2. Such involvement of hydroxyls is fundamentally different from that of cofeeding water which dissociates on metal oxide and catalyzes the acid-base-related chemistry. This study provides an important implication for the design and synthesis of supported Pt catalysts with atom efficiency for a very important practical application-room-temperature HCHO oxidation.

9.
ChemSusChem ; 15(12): e202200218, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35419991

RESUMO

Aqueous-phase oxidation by H2 O2 , known as the Fenton-type process, provides an attractive route to convert recalcitrant lignin derivatives to valuable chemicals under mild conditions. The development of this technology is, however, limited by the uncontrolled selectivity, resulting from the highly reactive nature of H2 O2 and the thermodynamically favored deep oxidation to form CO2 . This study demonstrated that formic acid could be produced with a high selectivity (up to 80.3 % at 313 K) from the Fenton-type oxidation of guaiacol and several other lignin derivatives over a bimetallic Fe-Cu catalyst supported on a ZSM-5 zeolite. Combined experimental and theoretical investigations unveiled that the micropores of the zeolite support, which contained active metal sites, preferred to adsorb C2 -C4 intermediates over formic acid because of its stronger dispersive interaction with the larger guest molecules. This confinement effect significantly suppressed the secondary oxidation of formic acid, accounting for the uniquely high formic acid selectivity over Fe-Cu/ZSM-5.


Assuntos
Cobre/química , Formiatos , Ferro/química , Lignina , Zeolitas/química , Catálise , Oxirredução
10.
Nat Commun ; 13(1): 1457, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304451

RESUMO

Spontaneous migration of atomic hydrogen species from metal particles to the surface of their support, known as hydrogen spillover, has been claimed to play a major role in catalytic processes involving hydrogen. While this phenomenon is well established on reducible oxide supports, its realization on much more commonly used non-reducible oxides is still challenged. Here we present a general strategy to enable effective hydrogen spillover over non-reducible SiO2 with aid of gaseous organic molecules containing a carbonyl group. By using hierarchically-porous-SiO2-supported bimetallic Pt-Fe catalysts with Pt nanoparticles exclusively deposited into the micropores, we demonstrate that activated hydrogen species generated on the Pt sites within the micropores can be readily transported by these oxygenate molecules to Fe sites located in macropores, leading to significantly accelerated hydrodeoxygenation rates on the latter sites. This finding provides a molecule-assisted approach to the rational design and optimization of multifunctional heterogeneous catalysts, reminiscent of the role of molecular coenzymes in bio-catalysis.

11.
ChemSusChem ; 15(10): e202200216, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35301825

RESUMO

The photocatalytic conversion of CO2 into solar fuels or chemicals is a sustainable approach to relieve the immediate problems related to global warming and the energy crisis. This study concerns the effects of morphological control on a Cu/Cu2 O-based photocatalyst for CO2 reduction. The as-synthesized spherical Cu/Cu2 O photocatalyst exhibits higher activity than the octahedral one under visible light irradiation. The difference in photocatalytic performance between these two catalysts could be attributed to the following two factors: (1) The multifaceted structure of spherical Cu/Cu2 O favors charge separation; (2) octahedral Cu/Cu2 O only contains more positively charged (111) facets, which are unfavorable for CO2 photoreduction. The results further highlight the importance of utilizing crystal facet engineering to further improve the performance of CO2 reduction photocatalysts.

12.
Nat Commun ; 11(1): 5693, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173054

RESUMO

Direct oxidation of methane to value-added C1 chemicals (e.g. HCHO and CO) provides a promising way to utilize natural gas sources under relatively mild conditions. Such conversions remain, however, a key selectivity challenge, resulting from the facile formation of undesired fully-oxidized CO2. Here we show that B2O3-based catalysts are selective in the direct conversion of methane to HCHO and CO (~94% selectivity with a HCHO/CO ratio of ~1 at 6% conversion) and highly stable (over 100 hour time-on-stream operation) conducted in a fixed-bed reactor (550 °C, 100 kPa, space velocity 4650 mL gcat-1 h-1). Combined catalyst characterization, kinetic studies, and isotopic labeling experiments unveil that molecular O2 bonded to tri-coordinated BO3 centers on B2O3 surfaces acts as a judicious oxidant for methane activation with mitigated CO2 formation, even at high O2/CH4 ratios of the feed. These findings shed light on the great potential of designing innovative catalytic processes for the direct conversion of alkanes to fuels/chemicals.

13.
Sci Adv ; 5(3): eaav8063, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899785

RESUMO

Hexagonal boron nitride (h-BN) catalyst has recently been reported to be highly selective in oxidative dehydrogenation of propane (ODHP) for olefin production. In addition to propene, ethylene also forms with much higher overall selectivities to C2-products than to C1-products. In this work, we report that the reaction pathways over the h-BN catalyst are different from the V-based catalysts in ODHP. Oxidative coupling reaction of methyl, an intermediate from the cleavage of C─C bond of propane, contributes to the high selectivities to C2-products, leading to more C2-products than C1-products over the h-BN catalyst. This work not only provides insight into the reaction mechanisms involved in ODHP over the boron-based catalysts but also sheds light on the selective oxidation of alkanes such as direct upgrading of methane via oxidative upgrading to ethylene or CH x O y on boron-based catalysts.

14.
ChemSusChem ; 10(23): 4715-4724, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-28926196

RESUMO

A new strategy was developed to simultaneously produce two important chemicals, namely, methallyl alcohol (Mol) and diethyl acetal (Dal) from methacrolein in ethanol solvent at low temperature with the use of Beta zeolites modified by tin (Sn-ß catalysts). All the Sn-ß catalysts were prepared by the solid-state ion-exchange method, wherein the calcination step was conducted under different gas atmospheres. The catalyst precalcined in Ar (Sn-ß-Ar) had a reduced number of extra-framework Sn species and enabled more Sn species to be exchanged into the framework as isolated tetrahedral SnIV , enhancing the catalytic activity of the Meerwein-Ponndorf-Verley (MPV) reaction. The sodium-exchanged Sn-ß-Ar, with a reduced number of weak Brønsted acid sites, led to an even better selectivity for Mol, owing to the restriction of the side reactions such as acetalization, addition, and etherification. Under optimized catalyst and reaction conditions, the yield of Mol and Dal reached approximately 90 % and 96 %, respectively. The possible reaction pathways, along with a complex network of side products, was proposed after a detailed investigation through the use of different substrates as reactants. The fine-tuning of Sn-ß catalysts through different treatments discussed in this work is of great significance toward the understanding and manipulation of complex reactions between α,ß-unsaturated aldehydes and primary alcohols.

15.
ChemSusChem ; 10(23): 4709-4714, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29045065

RESUMO

Photocatalytic CO2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO2 in the conversion of CO2 -H2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO2 leads to activity 15 times higher (T=358 K; ca. 99 % CH4 selectivity) in the conversion of CO2 -H2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO2 by hydrogen atoms generated in situ by photocatalytic water splitting.


Assuntos
Dióxido de Carbono/química , Hidrogênio/química , Processos Fotoquímicos , Energia Solar , Catálise , Temperatura Alta , Hidrogenação , Fotólise , Água
16.
Sci Rep ; 5: 15927, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26515084

RESUMO

Recently it has been shown that multicomponent spin-orbit-coupled fermions in one-dimensional optical lattices can be viewed as spinless fermions moving in two-dimensional synthetic lattices with synthetic magnetic flux. The quantum Hall edge states in these systems have been observed in recent experiments. In this paper we study the effect of an attractive Hubbard interaction. Since the Hubbard interaction is long-range in the synthetic dimension, it is able to efficiently induce Cooper pairing between the counterpropagating chiral edge states. The topological class of the resultant one-dimensional superfluid is determined by the parity (even/odd) of the Chern number in the two-dimensional synthetic lattice. We also show the presence of a chiral symmetry in our model, which implies Z classification and the robustness of multiple zero modes when this symmetry is unbroken.

17.
Sci Rep ; 5: 16197, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541611

RESUMO

For time-reversal symmetric cold atomic insulating systems, it is found that the usual driving approach based on electromagnetic field used in solid state systems loses its power to drive them from trivial regimes to topological regimes if the driven systems still hold time-reversal symmetry (TRS). For such systems, we point out that simply varying the optical lattice potential periodically provides a general and effective way to drive them into topological regimes without breaking their symmetries. Based on this approach, we find that the time-reversal symmetric Kane-Mele model can be effectively driven from the trivial phase to topological phases named as Floquet Quantum Spin Hall insulator. Due to the existence of two gaps in the Floquet system, this novel state of matter can stably host one or two pair of gapless helical states on the same boundary, which suggests this state is not a simple analog of the Quantum Spin Hall insulator. This new driving approach to a system without TRS is also investigated.

18.
ChemSusChem ; 8(3): 552-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25504857

RESUMO

The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios.


Assuntos
Petróleo , Zeolitas/química , Biomassa , Catálise , Temperatura , Volatilização
19.
J Phys Condens Matter ; 25(21): 215702, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23636990

RESUMO

We propose three possible momentum-dependent pairing potentials as candidates for topological superconductors (for example CuxBi2Se3), and calculate the surface spectral function and surface density of states with these pairing potentials. We find that the first two can give the same spectral functions as the fully gapped and node-contacted pairing potentials given by Fu and Berg (2010 Phys. Rev. Lett. 105 097001), and that the third one can obtain a topological non-trivial case in which there exists a flat Andreev bound state and which preserves the threefold rotation symmetry. We hope our proposals and results will be assessed by future experiment.

20.
J Phys Condens Matter ; 24(16): 165503, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22466723

RESUMO

In this paper, we consider there exist two types of fundamental quasihole excitation in the fractional quantum spin Hall state and investigate their topological properties by both Chern-Simons field theory and the Berry phase technique. By the two different techniques, we obtain the identical charge and statistical angle for each type of quasihole, as well as the identical mutual statistics between two different types of quasihole excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA