Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Idioma
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(9): 2313-6, 2009 Sep.
Artigo em Zh | MEDLINE | ID: mdl-19950618

RESUMO

The light yield of the as-grown PbWO4, annealed PbWO4 and BaF2:PbWO4 crystals were raised by utilizing our improved crystal growth instrument and technique. Their scintillating properties including transmittance, decay time and light yield were studied. Results reveal that the scintillating performances of the crystals were improved evidently by using the crystal annealing technique and the ions doping technique, especially the negative ions doping technique. The influence results of the two techniques are different. The ions doping technique raises their transmittance intensity in the whole measuring wavelength range. But the influence of annealing PbWO4 crystal on their transmittance is complicated. It improves its transmittance intensity at the wavelength above 360 nm, but weakens the transmittance intensity of the annealed PbWO4 crystal in the wavelength range from 320 to 360 nm. These phenomena should be related to the crystal defects which have absorption peaks in this wavelength range, especially for V(Pb)3+ defect which has characterized absorption peaks in this wavelength range. Also, the absorption of the defects influences the character of the decay time of these crystals. The big defect concentration relates to the short decay time. It should be mentioned that the ions doping technique reduces the defect content in the crystal, which is beneficial to the high transmittance intensity but induces slightly longer decay time than that of as-grown crystal and well annealed PbWO4 crystal. Also, the ions doping technique of the F- ion doped crystal leads to high light yield. The annealing technique and ions doping technique improve the light yield of crystals. The light yield of BaF2:PbWO4 reaches 65 p.e./MeV, which is near to the requirement of PET. The good result is related to the degeneration of the [WO4]2- tetrahedron induced by the F- occupying the O2- site in the crystal cell.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(2): 287-91, 2007 Feb.
Artigo em Zh | MEDLINE | ID: mdl-17514957

RESUMO

A batch of potassium lithium niobate (KLN) crystals with different compositions were grown by using TSSG technique. Samples with three different compositions were well polished. By using near infrared cw:Ti-sapphire laser, their Second Harmonic Generation (SHG) properties were investigated. The results showed that the SHG effect is related to the composition of the samples, and their frequency-doubling efficiency enhanced with the raise of Li ions content in the crystal. By using infrared Raman technique, the properties of nonlinear lattice vibration of thee samples were investigated, and the character of Raman spectrum were analyzed, as well the effect of composition on the SHG properties were discussed. The analysis results showed the striking effects of Li content for these Raman peaks. For KLN sample with small Li content, the three character peaks belonged to [NbO6]7- octahedron show simple peak. With the raise of Li content in crystal, the peaks belonged to v2 mode were partly split, and the peak belongs to v5 mode was broadened. When the Li content approach to the chemical composition KLN crystal, and the structure of [NbO6]7- octahedron is almost to be disorganized, the peaks belonged to v5 mode were split, and the peaks belonged to v1 mode and v2 mode were partly split also, with more distinct weak peaks in the wavelength range of 100-400 cm(-1). These effects were caused by the raise of Li content, which leads to the severer aberrance of [NbO6]7- octahedron in KLN crystal, and disturbing the lattice vibration of the octahedron. This phenomenon is agreed with the nonlinear properties of potassium lithium niobate crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA