Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 626(7998): 411-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297130

RESUMO

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Assuntos
Desidrocolesteróis , Ferroptose , Humanos , Membrana Celular/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Desidrocolesteróis/metabolismo , Genoma Humano , Nefropatias/metabolismo , Membranas Mitocondriais/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
Theor Appl Genet ; 137(7): 167, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909110

RESUMO

KEY MESSAGE: A large fragment deletion of CpAPRR2, encoding a two-component response regulator-like protein, which influences immature white rind color formation in zucchini (Cucurbita pepo). Fruit rind color is an important agronomic trait that affects commodity quality and consumer choice in zucchini (Cucurbita pepo). However, the molecular mechanism controlling rind color is unclear. We characterized two zucchini inbred lines: '19' (dark green rind) and '113' (white rind). Genetic analysis revealed white immature fruit rind color to be controlled by a dominant locus (CpW). Combining bulked segregant analysis sequencing (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) markers, we mapped the CpW locus to a 100.4 kb region on chromosome 5 and then narrow down the candidate region to 37.5 kb using linkage analysis of 532 BC1 and 1613 F2 individuals, including 6 coding genes. Among them, Cp4.1LG05g02070 (CpAPRR2), encoding a two-component response regulator-like protein, was regarded to be a promising candidate gene. The expression level of CpAPRR2 in dark green rind was significantly higher than that in white rind and was induced by light. A deletion of 2227 bp at the 5' end of CpAPRR2 in '113' might explain the white phenotype. Further analysis of allelic diversity in zucchini germplasm resources revealed rind color to be associated with the deletion of CpAPRR2. Subcellular localization analysis indicated that CpAPRR2 was a nuclear protein. Transcriptome analysis using near-isogenic lines with dark green (DG) and white (W) rind indicated that genes involved in photosynthesis and porphyrin metabolism pathways were enriched in DG compared with W. Additionally, chlorophyll synthesis-related genes were upregulated in DG. These results identify mechanisms of zucchini rind color and provide genetic resources for breeding.


Assuntos
Mapeamento Cromossômico , Cucurbita , Frutas , Fenótipo , Pigmentação , Frutas/genética , Frutas/crescimento & desenvolvimento , Pigmentação/genética , Cucurbita/genética , Cucurbita/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Alelos , Genes de Plantas , Cor , Transcriptoma
3.
Chemphyschem ; : e202400412, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772911

RESUMO

The N1-Spermidine/spermine acetyltransferase (SSAT) serves as the rate-limiting enzyme in the polyamine metabolism pathway, specifically catalyzing the acetylation of spermidine, spermine, and other specific polyamines. The source of its enzymatic selectivity remains elusive. Here, we used quantum mechanics and molecular mechanics simulations combined with various technologies to explore the enzymatic mechanism of SSAT for endogenous polyamines from an atomic perspective. The static binding and chemical transformation were considered. The binding affinity was identified to be dependent on protonated state of polyamine. The order of the binding affinity for Spm, Spd, and Put is consistent with the experimental results, which is also verified by the dynamic separation of polyamine and SSAT. Hydrogen bond interactions and salt bridges contribute most, and the common hot residues were identified. In addition, the transfer of acetyl and proton between polyamine and AcCoA was discovered to follow a concert mechanism, and thermodynamic properties are responsible for the catalytic efficiency of SSAT. This work may be helpful for development of polyamine derivatives based on catalysis to regulate polyamine metabolism.

4.
Org Biomol Chem ; 22(13): 2677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477554

RESUMO

Expression of Concern for 'Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway' by Zhi-Yong Tian et al., Org. Biomol. Chem., 2009, 7, 4651-4660, https://doi.org/10.1039/B912685F.

5.
Appl Microbiol Biotechnol ; 108(1): 67, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183487

RESUMO

Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.


Assuntos
Lonicera , Animais , Aeromonas hydrophila/genética , Ácido Clorogênico , Proteínas Hemolisinas , Répteis , Antibacterianos/farmacologia , Biofilmes
6.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257634

RESUMO

Traffic congestion results from the spatio-temporal imbalance of demand and supply. With the advances in connected technologies, incentive mechanisms for collaborative routing have the potential to provide behavior-consistent solutions to traffic congestion. However, such mechanisms raise privacy concerns due to their information-sharing and execution-validation procedures. This study leverages secure Multi-party Computation (MPC) and blockchain technologies to propose a privacy-preserving incentive mechanism for collaborative routing in a vehicle-to-everything (V2X) context, which consists of a collaborative routing scheme and a route validation scheme. In the collaborative routing scheme, sensitive information is shared through an off-chain MPC protocol for route updating and incentive computation. The incentives are then temporarily frozen in a series of cascading multi-signature wallets in case vehicles behave dishonestly or roadside units (RSUs) are hacked. The route validation scheme requires vehicles to create position proofs at checkpoints along their selected routes with the assistance of witness vehicles using an off-chain threshold signature protocol. RSUs will validate the position proofs, store them on the blockchain, and unfreeze the associated incentives. The privacy and security analysis illustrates the scheme's efficacy. Numerical studies reveal that the proposed incentive mechanism with tuned parameters is both efficient and implementable.

7.
Adv Exp Med Biol ; 1442: 1-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228955

RESUMO

Hematopoietic stem cells (HSCs) are situated at the top of the adult hematopoietic hierarchy in mammals and give rise to the majority of blood cells throughout life. Recently, with the advance of multiple single-cell technologies, researchers have unprecedentedly deciphered the cellular and molecular evolution, the lineage relationships, and the regulatory mechanisms underlying HSC emergence in mammals. In this review, we describe the precise vascular origin of HSCs in mouse and human embryos, emphasizing the conservation in the unambiguous arterial characteristics of the HSC-primed hemogenic endothelial cells (HECs). Serving as the immediate progeny of some HECs, functional pre-HSCs of mouse embryos can now be isolated at single-cell level using defined surface marker combinations. Heterogeneity regrading cell cycle status or lineage differentiation bias within HECs, pre-HSCs, or emerging HSCs in mouse embryos has been figured out. Several epigenetic regulatory mechanisms of HSC generation, including long noncoding RNA, DNA methylation modification, RNA splicing, and layered epigenetic modifications, have also been recently uncovered. In addition to that of HSCs, the cellular and molecular events underlying the development of multiple hematopoietic progenitors in human embryos/fetus have been unraveled with the use of series of single-cell technologies. Specifically, yolk sac-derived myeloid-biased progenitors have been identified as the earliest multipotent hematopoietic progenitors in human embryo, serving as an important origin of fetal liver monocyte-derived macrophages. Moreover, the development of multiple hematopoietic lineages in human embryos such as T and B lymphocytes, innate lymphoid cells, as well as myeloid cells like monocytes, macrophages, erythrocytes, and megakaryocytes has also been depicted and reviewed here.


Assuntos
Células Endoteliais , Imunidade Inata , Camundongos , Humanos , Animais , Linfócitos , Células-Tronco Hematopoéticas , Hematopoese , Diferenciação Celular , Embrião de Mamíferos , Mamíferos , Linhagem da Célula
8.
Yi Chuan ; 45(11): 1062-1073, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764271

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease, caused by severe fever with thrombocytopenia syndrome virus (SFTSV), which is primarily transmitted via tick bites. Clusters of SFTS caused by human-to-human transmission have been reported both at home and abroad, mainly focused on the transmission or exposure modes. However, the correlation between SFTS clusters and viral genotypes has not been investigated. This study mainly reported two clusters of SFTS in Xinyang City, Henan Province, from 2022 to 2023, discussed the possible route of person-to-person transmission of SFTSV infection and analyzed the association between SFTS clusters and virus genotypes. We found that two groups of SFTSV in two clusters were clustered separately into different genotypes through viral sequence analysis of 4 confirmed patients. We also performed phylogenetic analysis, after including SFTSV sequences obtained from SFTS clusters deposited in the GenBank. Three SFTSV genotypes have been reported among cases of human-to-human transmission, suggesting that the occurrence of SFTS clusters may not be related to SFTSV genotypes. This study provided genetic evidence for revealing the chain of human-to-human transmission of SFTS clusters, indicating that contact with patients' blood is an important transmission route of SFTSV. The findings laid the foundation for preventing and controlling human-to-human transmission of SFTS.


Assuntos
Genótipo , Phlebovirus , Filogenia , Febre Grave com Síndrome de Trombocitopenia , Humanos , Phlebovirus/genética , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/transmissão , China/epidemiologia , Masculino , Feminino
9.
Materials (Basel) ; 17(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998208

RESUMO

River silt deposited by water in coastal areas is unsuitable for engineering construction. Thus, the in situ stabilization treatment of river silt as the bearing layer has been an important research area in geotechnical engineering. The strength degradation behavior and mechanism of stabilized river silt reinforced with cement and alginate fibers (AFCS) in different engineering environments are crucial for engineering applications. Therefore, freeze-thaw (F-T) cycle tests, wetting-drying (W-D) cycle tests, water immersion tests and seawater erosion tests were conducted to explore the strength attenuation of stabilized river silt reinforced with the same cement content (9% by wet weight) and different fiber contents (0%, 0.3%, 0.6% and 0.9% by weight of wet soil) and fiber lengths (3 mm, 6 mm and 9 mm). The reinforcement and damage mechanism of AFCS was analyzed by scanning electron microscopy (SEM) imaging. The results indicate that the strength of AFCS was improved from 84% to 180% at 15 F-T cycle tests, and the strength of AFCS was improved by 26% and 40% at 30 W-D cycles, which showed better stability and excellent characteristics owing to the hygroscopic characteristics of alginate fiber arousing the release of calcium and magnesium ions within the alginate. Also, the strength attenuation of AFCS was reduced with the increase in the length and content of alginate fibers. Further, the strength of specimens in the freshwater environment was higher than that in the seawater environment at the same fiber content, and the softening coefficient of AFCS in the freshwater environment was above 0.85, indicating that the AFCS had good water stability. The optimal fiber content was found to be 0.6% based on the unconfined compressive strength (UCS) reduction in specimens cured in seawater and a freshwater environment. And the strength of AFCS was improved by about 10% compared with that of cement-stabilized soil (CS) in a seawater environment. A stable spatial network structure inside the soil was formed, in which the reinforcing effect of fibers was affected by mechanical connection, friction and interfacial bonding. However, noticeable cracks developed in the immersed and F-T specimens. These microscopic characteristics contributed to decreased mechanical properties for AFCS. The results of this research provide a reference for the engineering application of AFCS.

10.
Medicine (Baltimore) ; 103(6): e37224, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335401

RESUMO

Acori Tatarinowii Rhizoma (ATR) and Nardostahyos Radix et Rhizoma (NRR) are well-known traditional Chinese medicines that have been extensively used for the treatment of epilepsy (EP). However, the precise molecular mechanism of ATR-NRR action remains unclear because of their intricate ingredients. This study aimed to investigate the underlying mechanism of ATR-NRR in EP treatment using network pharmacology and molecular docking techniques. Herbal medicine and disease gene databases were searched to determine active constituents and shared targets of ATR-NRR and EP. A protein-protein interaction network was constructed using the STRING database, while the Gene Ontology and the Kyoto Encyclopedia of Genes and Genome pathway enrichment were performed using R programming. An ingredient-target-pathway network map was constructed using the Cytoscape software, incorporating network topology calculations to predict active ingredients and hub targets. The binding abilities of active ingredients and hub targets were examined using molecular docking. Nine qualified compounds and 53 common targets were obtained. The prominent active compounds were kaempferol, acacetin, cryptotanshinone, 8-isopentenyl-kaempferol, naringenin, and eudesmin, while the primary targets were RELA, AKT1, CASP3, MAPK8, JUN, TNF, and TP53. Molecular docking analysis revealed that they have substantial binding abilities. These 53 targets were found to influence EP by manipulating PI3K-Akt, IL-17, TNF, and apoptosis signaling pathways. The findings of this study indicate that ATR-NRR functions against EP by acting upon multiple pathways and targets, offering a basis for future study.


Assuntos
Medicamentos de Ervas Chinesas , Epilepsia , Humanos , Simulação de Acoplamento Molecular , Quempferóis , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Epilepsia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa
11.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255565

RESUMO

To study the applicability of the new geopolymer grouting material for super-long and large-diameter post-grouting bored piles in silty fine sand geology, this paper compares the bearing capacity of two grouting materials, geopolymer and normal Portland cement, and different grouting volume pile side-distributed grouting piles in silty fine sand based on field model tests are analyzed through the diffusion forms of the two materials in silty fine sand through the morphology of the grouted body after excavation. The results show that the ultimate bearing capacities of P0 (ungrouted pile), P1 (8 kg cement grouted pile), P2 (6 kg geopolymer-grouted pile), P3 (8 kg geopolymer-grouted pile) and P4 (10 kg geopolymer-grouted pile) are 5400 N, 8820 N, 9450 N, 11,700 N and 12,600 N, respectively, and that the ultimate bearing capacity of the grouted pile is improved compared with that of the ungrouted pile since, under the same grouting amount, the maximum bearing capacity of the pile using geopolymer grouting is increased by 133% compared with that of the pile with cement grouting. This further verifies the applicability of the geopolymer grouting material for the post-grouting of the pile foundation in silty fine sand. Under the action of the ultimate load, the pile side friction resistance of P1, P2, P3 and P4 is increased by 200%, 218%, 284% and 319% compared with that of P0. In addition, the excavation results show that the geopolymer post-grouting pile forms the ellipsoidal consolidation body at the pile side grouting location, which mainly comprises extrusion diffusion with a small amount of infiltration diffusion, and the cement grouting pile forms a sheet-like consolidation body at the lower grouting location, which primarily comprises split diffusion. This study can provide a reference basis for the theoretical and engineering application of post-grouting piles using geopolymers.

13.
Chem Sci ; 15(8): 2867-2882, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404376

RESUMO

The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.

14.
Medicine (Baltimore) ; 103(20): e38001, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758850

RESUMO

To identify disease signature genes associated with immune infiltration in nonalcoholic steatohepatitis (NASH), we downloaded 2 publicly available gene expression profiles, GSE164760 and GSE37031, from the gene expression omnibus database. These profiles represent human NASH and control samples and were used for differential genes (DEGs) expression screening. Two machine learning methods, the Least Absolute Shrinkage and Selection Operator regression model and Support Vector Machine Recursive Feature Elimination, were used to identify candidate disease signature genes. The CIBERSORT deconvolution algorithm was employed to analyze the infiltration of 22 immune cell types in NASH. Additionally, we constructed a NASH cell model using HepG2 cells treated with oleic acid and free fatty acids. The construction of the cell model was verified using oil red O staining, and Western blotting was used to detect the protein expression of the disease signature genes in both control and model groups. As a result, a total of 262 DEGs were identified. These DEGs were primarily associated with metal ion transmembrane transporter activity, sodium ion transmembrane transporter protein activity, calcium ion, and neuroactive ligand-receptor interactions. FOS, IGFBP2, dual-specificity phosphatase 1 (DUSP1), and IKZF3 were identified as disease signature genes of NASH by the least absolute shrinkage and selection operator and Support Vector Machine Recursive Feature Elimination algorithms for DEGs analysis. The receiver operating characteristic curves showed that FOS, IGFBP2, DUSP1, and IKZF3 had good diagnostic value (area under receiver operating characteristic curve > 0.8). These findings were validated in the GSE89632 dataset and through cellular assays. Immunocyte infiltration analysis revealed that NASH was associated with CD8 T cells, CD4 T cells, follicular helper T cells, resting NK cells, eosinophils, regulatory T cells, and γδ T cells. The FOS, IGFBP2, DUSP1, and IKZF3 genes were specifically associated with follicular helper T cells. Lipid droplet aggregation significantly increased in HepG2 cells treated with oleic acid and free fatty acids, indicating successful construction of the cell model. In this model, the expression of FOS, IGFBP2, and DUSP1 was significantly decreased, while that of IKZF3 was significantly elevated (P < .01, P < .001) compared with the control group. Therefore, FOS, IGFBP2, DUSP1, and IKZF3 can be considered as disease signature genes associated with immune infiltration in NASH.


Assuntos
Aprendizado de Máquina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/imunologia , Células Hep G2 , Perfilação da Expressão Gênica/métodos , Algoritmos , Máquina de Vetores de Suporte , Transcriptoma
15.
ChemSusChem ; : e202401295, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148488

RESUMO

Solar thermochemical CO2 splitting using metal oxides is considered as a promising approach to produce solar fuels since it is capable to tap abundant sunlight directly and store solar energy in the renewable fuel. It remains a grand challenge to achieve highly efficient CO2 splitting at low temperature (<800 oC) due to insufficient activation of metal oxides for CO2.Herein, the introduction of a small amount of Pt was found to be able to greatly increase the performance of CO2 splitting with the highest peak CO production rate of about 65 mL min-1 g-1, CO productivity of about 53 mL g-1, nearly 100% CO2 conversion and long-term stability for 0.5Pt/CeO2 which exceeded most of the state-of-the-art transition metals-based oxides even at lower temperature (700 oC). This could be attributed to the addition of Pt leading to the formation of an interface (Pt0-Ov-Ce3+) after CH4 reduction, which improved CO2 activation and dissociation due to beneficial breakage of C=O bond by the cooperation of Pt0 and oxygen vacancies in the interface.

16.
Antibiotics (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061288

RESUMO

Influenza viruses are the leading cause of upper respiratory tract infections, leading to several global pandemics and threats to public health. Due to the continuous mutation of influenza A viruses, there is a constant need for the development of novel antiviral therapeutics. Recently, natural antimicrobial peptides have provided an opportunity for the discovery of anti-influenza molecules. Here, we designed several peptides based on pheasant cathelicidin and tested their antiviral activities and mechanisms against the H1N1 virus. Of note, the designed peptides Pc-4 and Pc-5 were found to inhibit replication of the H1N1 virus with an IC50 = 8.14 ± 3.94 µM and 2.47 ± 1.95 µM, respectively. In addition, the cyclic peptide Pc-5 was found to induce type I interferons and the expression of interferon-induced genes. An animal study showed that the cyclic peptide Pc-5 effectively inhibited H1N1 virus infection in a mouse model. Taken together, our work reveals a strategy for designing cyclic peptides and provides novel molecules with therapeutic potential against influenza A virus infection.

17.
Int J Biol Macromol ; : 133753, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39084974

RESUMO

In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose­sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.

18.
Oncogene ; 43(25): 1930-1940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698265

RESUMO

Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-ß1 (TGF-ß1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-ß1 to specifically deplete human Tregs but not other cell types a challenge. TGF-ß1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-ß1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-ß1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-ß1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-ß1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.


Assuntos
Neoplasias da Mama , Lisossomos , Proteínas de Membrana , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1 , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Feminino , Proteínas de Membrana/metabolismo , Animais , Camundongos , Metástase Neoplásica , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA