Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Gynecol Obstet ; 309(2): 503-514, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36790463

RESUMO

PURPOSE: To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in distinguishing invasive placentas. METHODS: A total of 53 patients with invasive placentas and 47 patients with noninvasive placentas undergoing conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI) were retrospectively enrolled. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured and compared from the volumetric analysis. Receiver operating characteristics (ROC) curve and logistic regression analyses were conducted to evaluate the diagnostic efficiency of different diffusion parameters for distinguishing invasive placentas. RESULTS: Comparisons between accreta lesions in patients with invasive placentas (AL) and lower 1/3 part of the placenta in patients with noninvasive placentas (LP) demonstrated that MD mean, D mean, and D* mean were significantly lower while ADC max and D max were significantly higher in invasive placentas (all p < 0.05). Multivariate analysis demonstrated that D mean, D max and D* mean differed significantly among all the studied parameters for invasive placentas. A combined use of these three parameters yielded an AUC of 0.86 with sensitivity, specificity, and accuracy of 84.91%, 76.60%, and 80%, respectively. CONCLUSION: The combined use of different IVIM parameters is helpful in distinguishing invasive placentas.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Humanos , Estudos Retrospectivos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Curva ROC , Movimento (Física)
2.
Clin Chem ; 69(2): 130-139, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544350

RESUMO

BACKGROUND: Immunofixation electrophoresis (IFE) is important for diagnosis of plasma cell disorders (PCDs). Manual analysis of IFE images is time-consuming and potentially subjective. An artificial intelligence (AI) system for automatic and accurate IFE image recognition is desirable. METHODS: In total, 12 703 expert-annotated IFE images (9182 from a new IFE imaging system and 3521 from an old one) were used to develop and test an AI system that was an ensemble of 3 deep neural networks. The model takes an IFE image as input and predicts the presence of 8 basic patterns (IgA-, IgA-, IgG-, IgG-, IgM-, IgM-, light chain and ) and their combinations. Score-based class activation maps (Score-CAMs) were used for visual explanation of the models prediction. RESULTS: The AI model achieved an average accuracy, sensitivity, and specificity of 99.82, 93.17, and 99.93, respectively, for detection of the 8 basic patterns, which outperformed 4 junior experts with 1 years experience and was comparable to a senior expert with 5 years experience. The Score-CAMs gave a reasonable visual explanation of the prediction by highlighting the target aligned regions in the bands and indicating potentially unreliable predictions. When trained with only the new system images, the models performance was still higher than junior experts on both the new and old IFE systems, with average accuracy of 99.91 and 99.81, respectively. CONCLUSIONS: Our AI system achieved human-level performance in automatic recognition of IFE images, with high explainability and generalizability. It has the potential to improve the efficiency and reliability of diagnosis of PCDs.


Assuntos
Aprendizado Profundo , Paraproteinemias , Humanos , Reprodutibilidade dos Testes , Inteligência Artificial , Imunoeletroforese/métodos , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
3.
Neurocomputing (Amst) ; 544: None, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528990

RESUMO

Accurate segmentation of brain tumors from medical images is important for diagnosis and treatment planning, and it often requires multi-modal or contrast-enhanced images. However, in practice some modalities of a patient may be absent. Synthesizing the missing modality has a potential for filling this gap and achieving high segmentation performance. Existing methods often treat the synthesis and segmentation tasks separately or consider them jointly but without effective regularization of the complex joint model, leading to limited performance. We propose a novel brain Tumor Image Synthesis and Segmentation network (TISS-Net) that obtains the synthesized target modality and segmentation of brain tumors end-to-end with high performance. First, we propose a dual-task-regularized generator that simultaneously obtains a synthesized target modality and a coarse segmentation, which leverages a tumor-aware synthesis loss with perceptibility regularization to minimize the high-level semantic domain gap between synthesized and real target modalities. Based on the synthesized image and the coarse segmentation, we further propose a dual-task segmentor that predicts a refined segmentation and error in the coarse segmentation simultaneously, where a consistency between these two predictions is introduced for regularization. Our TISS-Net was validated with two applications: synthesizing FLAIR images for whole glioma segmentation, and synthesizing contrast-enhanced T1 images for Vestibular Schwannoma segmentation. Experimental results showed that our TISS-Net largely improved the segmentation accuracy compared with direct segmentation from the available modalities, and it outperformed state-of-the-art image synthesis-based segmentation methods.

4.
BMC Pregnancy Childbirth ; 22(1): 349, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459146

RESUMO

BACKGROUND: To investigate the diagnostic value of monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in differentiating placenta accreta spectrum (PAS) disorders. METHODS: A total of 65 patients with PAS disorders and 27 patients with normal placentas undergoing conventional DWI, IVIM, and DKI were retrospectively reviewed. The mean, minimum, and maximum parameters including the apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, diffusion kurtosis (MK), and mean diffusion coefficient (MD) from DKI and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured from the volumetric analysis and compared between patients with PAS disorders and patients with normal placentas. Univariate and multivariated logistic regression analyses were used to evaluate the value of the above parameters for differentiating PAS disorders. Receiver operating characteristics (ROC) curve analyses were used to evaluate the diagnostic efficiency of different diffusion parameters for predicting PAS disorders. RESULTS: Multivariate analysis demonstrated that only D mean and D max differed significantly among all the studied parameters for differentiating PAS disorders when comparisons between accreta lesions in patients with PAS (AP) and whole placentas in patients with normal placentas (WP-normal) were performed (all p < 0.05). For discriminating PAS disorders, a combined use of these two parameters yielded an AUC of 0.93 with sensitivity, specificity, and accuracy of 83.08, 88.89, and 83.70%, respectively. CONCLUSION: The diagnostic performance of the parameters from accreta lesions was better than that of the whole placenta. D mean and D max were associated with PAS disorders.


Assuntos
Placenta Acreta , Biomarcadores , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Placenta Acreta/diagnóstico por imagem , Gravidez , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
MAGMA ; 35(6): 1009-1020, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802217

RESUMO

OBJECTIVES: To evaluate the placental function by monoexponential, biexponential, and diffusion kurtosis MR imaging (MRI) in patients with placenta previa. METHODS: A total of 62 patients with placenta accreta spectrum (PAS) disorders and 11 patients with normal placentas were retrospectively enrolled, who underwent conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI). The apparent diffusion coefficient (ADC) and exponential ADC (eADC) from standard DWI, mean kurtosis (MK), and diffusion coefficient (MD) from DKI, and pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) from IVIM were measured and compared from the volumetric analysis. RESULTS: Comparisons between patients with PAS disorders and patients with normal placentas demonstrated that MD mean, D mean, and D* mean values in patients with PAS disorders were significantly higher than those in patients with normal placentas (p < 0.05). Comparisons between patients with accreta, increta, and percreta, and patients with normal placentas showed that the D mean was significantly higher in patients with placenta increta and percreta than in patients with normal placentas (p < 0.05). CONCLUSION: The accreta lesions in PAS disorders had deceased cellularity and increased blood movement. The alteration of placental cellularity was more prominent in placenta increta and percreta.


Assuntos
Placenta Acreta , Placenta Prévia , Humanos , Feminino , Gravidez , Placenta Acreta/diagnóstico por imagem , Placenta Prévia/diagnóstico por imagem , Estudos Retrospectivos , Placenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Perfusão
6.
Neuroimage ; 206: 116324, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704293

RESUMO

High-resolution volume reconstruction from multiple motion-corrupted stacks of 2D slices plays an increasing role for fetal brain Magnetic Resonance Imaging (MRI) studies. Currently existing reconstruction methods are time-consuming and often require user interactions to localize and extract the brain from several stacks of 2D slices. We propose a fully automatic framework for fetal brain reconstruction that consists of four stages: 1) fetal brain localization based on a coarse segmentation by a Convolutional Neural Network (CNN), 2) fine segmentation by another CNN trained with a multi-scale loss function, 3) novel, single-parameter outlier-robust super-resolution reconstruction, and 4) fast and automatic high-resolution visualization in standard anatomical space suitable for pathological brains. We validated our framework with images from fetuses with normal brains and with variable degrees of ventriculomegaly associated with open spina bifida, a congenital malformation affecting also the brain. Experiments show that each step of our proposed pipeline outperforms state-of-the-art methods in both segmentation and reconstruction comparisons including expert-reader quality assessments. The reconstruction results of our proposed method compare favorably with those obtained by manual, labor-intensive brain segmentation, which unlocks the potential use of automatic fetal brain reconstruction studies in clinical practice.


Assuntos
Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Hidrocefalia/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Espinha Bífida Cística/diagnóstico por imagem , Aprendizado Profundo , Feminino , Terapias Fetais , Idade Gestacional , Humanos , Redes Neurais de Computação , Gravidez , Espinha Bífida Cística/cirurgia
7.
Neurocomputing (Amst) ; 335: 34-45, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31595105

RESUMO

Despite the state-of-the-art performance for medical image segmentation, deep convolutional neural networks (CNNs) have rarely provided uncertainty estimations regarding their segmentation outputs, e.g., model (epistemic) and image-based (aleatoric) uncertainties. In this work, we analyze these different types of uncertainties for CNN-based 2D and 3D medical image segmentation tasks at both pixel level and structure level. We additionally propose a test-time augmentation-based aleatoric uncertainty to analyze the effect of different transformations of the input image on the segmentation output. Test-time augmentation has been previously used to improve segmentation accuracy, yet not been formulated in a consistent mathematical framework. Hence, we also propose a theoretical formulation of test-time augmentation, where a distribution of the prediction is estimated by Monte Carlo simulation with prior distributions of parameters in an image acquisition model that involves image transformations and noise. We compare and combine our proposed aleatoric uncertainty with model uncertainty. Experiments with segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) showed that 1) the test-time augmentation-based aleatoric uncertainty provides a better uncertainty estimation than calculating the test-time dropout-based model uncertainty alone and helps to reduce overconfident incorrect predictions, and 2) our test-time augmentation outperforms a single-prediction baseline and dropout-based multiple predictions.

8.
IEEE Trans Med Imaging ; PP2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602852

RESUMO

Adapting a medical image segmentation model to a new domain is important for improving its cross-domain transferability, and due to the expensive annotation process, Unsupervised Domain Adaptation (UDA) is appealing where only unlabeled images are needed for the adaptation. Existing UDA methods are mainly based on image or feature alignment with adversarial training for regularization, and they are limited by insufficient supervision in the target domain. In this paper, we propose an enhanced Filtered Pseudo Label (FPL+)-based UDA method for 3D medical image segmentation. It first uses cross-domain data augmentation to translate labeled images in the source domain to a dual-domain training set consisting of a pseudo source-domain set and a pseudo target-domain set. To leverage the dual-domain augmented images to train a pseudo label generator, domain-specific batch normalization layers are used to deal with the domain shift while learn the domain-invariant structure features, generating high-quality pseudo labels for target-domain images. We then combine labeled source-domain images and target-domain images with pseudo labels to train a final segmentor, where image-level weighting based on uncertainty estimation and pixel-level weighting based on dual-domain consensus are proposed to mitigate the adverse effect of noisy pseudo labels. Experiments on three public multi-modal datasets for Vestibular Schwannoma, brain tumor and whole heart segmentation show that our method surpassed ten state-of-the-art UDA methods, and it even achieved better results than fully supervised learning in the target domain in some cases.

9.
IEEE Trans Med Imaging ; 43(1): 175-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37440388

RESUMO

Deep neural networks typically require accurate and a large number of annotations to achieve outstanding performance in medical image segmentation. One-shot and weakly-supervised learning are promising research directions that reduce labeling effort by learning a new class from only one annotated image and using coarse labels instead, respectively. In this work, we present an innovative framework for 3D medical image segmentation with one-shot and weakly-supervised settings. Firstly a propagation-reconstruction network is proposed to propagate scribbles from one annotated volume to unlabeled 3D images based on the assumption that anatomical patterns in different human bodies are similar. Then a multi-level similarity denoising module is designed to refine the scribbles based on embeddings from anatomical- to pixel-level. After expanding the scribbles to pseudo masks, we observe the miss-classified voxels mainly occur at the border region and propose to extract self-support prototypes for the specific refinement. Based on these weakly-supervised segmentation results, we further train a segmentation model for the new class with the noisy label training strategy. Experiments on three CT and one MRI datasets show the proposed method obtains significant improvement over the state-of-the-art methods and performs robustly even under severe class imbalance and low contrast. Code is publicly available at https://github.com/LWHYC/OneShot_WeaklySeg.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Aprendizado de Máquina Supervisionado
10.
IEEE Trans Med Imaging ; 42(10): 2912-2923, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093729

RESUMO

Semantic segmentation of histopathological images is important for automatic cancer diagnosis, and it is challenged by time-consuming and labor-intensive annotation process that obtains pixel-level labels for training. To reduce annotation costs, Weakly Supervised Semantic Segmentation (WSSS) aims to segment objects by only using image or patch-level classification labels. Current WSSS methods are mostly based on Class Activation Map (CAM) that usually locates the most discriminative object part with limited segmentation accuracy. In this work, we propose a novel two-stage weakly supervised segmentation framework based on High-resolution Activation Maps and Interleaved Learning (HAMIL). First, we propose a simple yet effective Classification Network with High-resolution Activation Maps (HAM-Net) that exploits a lightweight classification head combined with Multiple Layer Fusion (MLF) of activation maps and Monte Carlo Augmentation (MCA) to obtain precise foreground regions. Second, we use dense pseudo labels generated by HAM-Net to train a better segmentation model, where three networks with the same structure are trained with interleaved learning: The agreement between two networks is used to highlight reliable pseudo labels for training the third network, and at the same time, the two networks serve as teachers for guiding the third network via knowledge distillation. Extensive experiments on two public histopathological image datasets of lung cancer demonstrated that our proposed HAMIL outperformed state-of-the-art weakly supervised and noisy label learning methods, respectively. The code is available at https://github.com/HiLab-git/HAMIL.


Assuntos
Neoplasias Pulmonares , Humanos , Método de Monte Carlo , Semântica , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
11.
IEEE Trans Med Imaging ; 42(8): 2235-2246, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37022877

RESUMO

The success of Convolutional Neural Networks (CNNs) in 3D medical image segmentation relies on massive fully annotated 3D volumes for training that are time-consuming and labor-intensive to acquire. In this paper, we propose to annotate a segmentation target with only seven points in 3D medical images, and design a two-stage weakly supervised learning framework PA-Seg. In the first stage, we employ geodesic distance transform to expand the seed points to provide more supervision signal. To further deal with unannotated image regions during training, we propose two contextual regularization strategies, i.e., multi-view Conditional Random Field (mCRF) loss and Variance Minimization (VM) loss, where the first one encourages pixels with similar features to have consistent labels, and the second one minimizes the intensity variance for the segmented foreground and background, respectively. In the second stage, we use predictions obtained by the model pre-trained in the first stage as pseudo labels. To overcome noises in the pseudo labels, we introduce a Self and Cross Monitoring (SCM) strategy, which combines self-training with Cross Knowledge Distillation (CKD) between a primary model and an auxiliary model that learn from soft labels generated by each other. Experiments on public datasets for Vestibular Schwannoma (VS) segmentation and Brain Tumor Segmentation (BraTS) demonstrated that our model trained in the first stage outperformed existing state-of-the-art weakly supervised approaches by a large margin, and after using SCM for additional training, the model's performance was close to its fully supervised counterpart on the BraTS dataset.


Assuntos
Neoplasias Encefálicas , Humanos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
12.
Med Phys ; 50(7): 4430-4442, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36762594

RESUMO

BACKGROUND: Delineation of Organs-at-Risks (OARs) is an important step in radiotherapy treatment planning. As manual delineation is time-consuming, labor-intensive and affected by inter- and intra-observer variability, a robust and efficient automatic segmentation algorithm is highly desirable for improving the efficiency and repeatability of OAR delineation. PURPOSE: Automatic segmentation of OARs in medical images is challenged by low contrast, various shapes and imbalanced sizes of different organs. We aim to overcome these challenges and develop a high-performance method for automatic segmentation of 10 OARs required in radiotherapy planning for brain tumors. METHODS: A novel two-stage segmentation framework is proposed, where a coarse and simultaneous localization of all the target organs is obtained in the first stage, and a fine segmentation is achieved for each organ, respectively, in the second stage. To deal with organs with various sizes and shapes, a stratified segmentation strategy is proposed, where a High- and Low-Resolution Residual Network (HLRNet) that consists of a multiresolution branch and a high-resolution branch is introduced to segment medium-sized organs, and a High-Resolution Residual Network (HRRNet) is used to segment small organs. In addition, a label fusion strategy is proposed to better deal with symmetric pairs of organs like the left and right cochleas and lacrimal glands. RESULTS: Our method was validated on the dataset of MICCAI ABCs 2020 challenge for OAR segmentation. It obtained an average Dice of 75.8% for 10 OARs, and significantly outperformed several state-of-the-art models including nnU-Net (71.6%) and FocusNet (72.4%). Our proposed HLRNet and HRRNet improved the segmentation accuracy for medium-sized and small organs, respectively. The label fusion strategy led to higher accuracy for symmetric pairs of organs. CONCLUSIONS: Our proposed method is effective for the segmentation of OARs of brain tumors, with a better performance than existing methods, especially on medium-sized and small organs. It has a potential for improving the efficiency of radiotherapy planning with high segmentation accuracy.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia
13.
IEEE Trans Med Imaging ; 42(1): 245-256, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155435

RESUMO

Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for medical image segmentation, yet need plenty of manual annotations for training. Semi-Supervised Learning (SSL) methods are promising to reduce the requirement of annotations, but their performance is still limited when the dataset size and the number of annotated images are small. Leveraging existing annotated datasets with similar anatomical structures to assist training has a potential for improving the model's performance. However, it is further challenged by the cross-anatomy domain shift due to the image modalities and even different organs in the target domain. To solve this problem, we propose Contrastive Semi-supervised learning for Cross Anatomy Domain Adaptation (CS-CADA) that adapts a model to segment similar structures in a target domain, which requires only limited annotations in the target domain by leveraging a set of existing annotated images of similar structures in a source domain. We use Domain-Specific Batch Normalization (DSBN) to individually normalize feature maps for the two anatomical domains, and propose a cross-domain contrastive learning strategy to encourage extracting domain invariant features. They are integrated into a Self-Ensembling Mean-Teacher (SE-MT) framework to exploit unlabeled target domain images with a prediction consistency constraint. Extensive experiments show that our CS-CADA is able to solve the challenging cross-anatomy domain shift problem, achieving accurate segmentation of coronary arteries in X-ray images with the help of retinal vessel images and cardiac MR images with the help of fundus images, respectively, given only a small number of annotations in the target domain. Our code is available at https://github.com/HiLab-git/DAG4MIA.


Assuntos
Vasos Coronários , Coração , Fundo de Olho , Coração/diagnóstico por imagem , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
14.
IEEE Trans Med Imaging ; 42(9): 2513-2523, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030798

RESUMO

Accurate segmentation of multiple abdominal organs from Computed Tomography (CT) images plays an important role in computer-aided diagnosis, treatment planning and follow-up. Currently, 3D Convolution Neural Networks (CNN) have achieved promising performance for automatic medical image segmentation tasks. However, most existing 3D CNNs have a large set of parameters and huge floating point operations (FLOPs), and 3D CT volumes have a large size, leading to high computational cost, which limits their clinical application. To tackle this issue, we propose a novel framework based on lightweight network and Knowledge Distillation (KD) for delineating multiple organs from 3D CT volumes. We first propose a novel lightweight medical image segmentation network named LCOV-Net for reducing the model size and then introduce two knowledge distillation modules (i.e., Class-Affinity KD and Multi-Scale KD) to effectively distill the knowledge from a heavy-weight teacher model to improve LCOV-Net's segmentation accuracy. Experiments on two public abdominal CT datasets for multiple organ segmentation showed that: 1) Our LCOV-Net outperformed existing lightweight 3D segmentation models in both computational cost and accuracy; 2) The proposed KD strategy effectively improved the performance of the lightweight network, and it outperformed existing KD methods; 3) Combining the proposed LCOV-Net and KD strategy, our framework achieved better performance than the state-of-the-art 3D nnU-Net with only one-fifth parameters. The code is available at https://github.com/HiLab-git/LCOVNet-and-KD.


Assuntos
Abdome , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Abdome/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Diagnóstico por Computador , Processamento de Imagem Assistida por Computador/métodos
15.
Comput Methods Programs Biomed ; 231: 107398, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773591

RESUMO

BACKGROUND AND OBJECTIVE: Open-source deep learning toolkits are one of the driving forces for developing medical image segmentation models that are essential for computer-assisted diagnosis and treatment procedures. Existing toolkits mainly focus on fully supervised segmentation that assumes full and accurate pixel-level annotations are available. Such annotations are time-consuming and difficult to acquire for segmentation tasks, which makes learning from imperfect labels highly desired for reducing the annotation cost. We aim to develop a new deep learning toolkit to support annotation-efficient learning for medical image segmentation, which can accelerate and simplify the development of deep learning models with limited annotation budget, e.g., learning from partial, sparse or noisy annotations. METHODS: Our proposed toolkit named PyMIC is a modular deep learning library for medical image segmentation tasks. In addition to basic components that support development of high-performance models for fully supervised segmentation, it contains several advanced components that are tailored for learning from imperfect annotations, such as loading annotated and unannounced images, loss functions for unannotated, partially or inaccurately annotated images, and training procedures for co-learning between multiple networks, etc. PyMIC is built on the PyTorch framework and supports development of semi-supervised, weakly supervised and noise-robust learning methods for medical image segmentation. RESULTS: We present several illustrative medical image segmentation tasks based on PyMIC: (1) Achieving competitive performance on fully supervised learning; (2) Semi-supervised cardiac structure segmentation with only 10% training images annotated; (3) Weakly supervised segmentation using scribble annotations; and (4) Learning from noisy labels for chest radiograph segmentation. CONCLUSIONS: The PyMIC toolkit is easy to use and facilitates efficient development of medical image segmentation models with imperfect annotations. It is modular and flexible, which enables researchers to develop high-performance models with low annotation cost. The source code is available at:https://github.com/HiLab-git/PyMIC.


Assuntos
Aprendizado Profundo , Diagnóstico por Computador , Coração , Software , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
16.
Med Image Anal ; 88: 102873, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421932

RESUMO

Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.

17.
Med Image Anal ; 89: 102904, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506556

RESUMO

Generalization to previously unseen images with potential domain shifts is essential for clinically applicable medical image segmentation. Disentangling domain-specific and domain-invariant features is key for Domain Generalization (DG). However, existing DG methods struggle to achieve effective disentanglement. To address this problem, we propose an efficient framework called Contrastive Domain Disentanglement and Style Augmentation (CDDSA) for generalizable medical image segmentation. First, a disentangle network decomposes the image into domain-invariant anatomical representation and domain-specific style code, where the former is sent for further segmentation that is not affected by domain shift, and the disentanglement is regularized by a decoder that combines the anatomical representation and style code to reconstruct the original image. Second, to achieve better disentanglement, a contrastive loss is proposed to encourage the style codes from the same domain and different domains to be compact and divergent, respectively. Finally, to further improve generalizability, we propose a style augmentation strategy to synthesize images with various unseen styles in real time while maintaining anatomical information. Comprehensive experiments on a public multi-site fundus image dataset and an in-house multi-site Nasopharyngeal Carcinoma Magnetic Resonance Image (NPC-MRI) dataset show that the proposed CDDSA achieved remarkable generalizability across different domains, and it outperformed several state-of-the-art methods in generalizable segmentation. Code is available at https://github.com/HiLab-git/DAG4MIA.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Fundo de Olho
18.
Int J Radiat Oncol Biol Phys ; 117(4): 994-1006, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244625

RESUMO

PURPOSE: Our purpose was to develop a deep learning model (AbsegNet) that produces accurate contours of 16 organs at risk (OARs) for abdominal malignancies as an essential part of fully automated radiation treatment planning. METHODS AND MATERIALS: Three data sets with 544 computed tomography scans were retrospectively collected. Data set 1 was split into 300 training cases and 128 test cases (cohort 1) for AbsegNet. Data set 2, including cohort 2 (n = 24) and cohort 3 (n = 20), were used to validate AbsegNet externally. Data set 3, including cohort 4 (n = 40) and cohort 5 (n = 32), were used to clinically assess the accuracy of AbsegNet-generated contours. Each cohort was from a different center. The Dice similarity coefficient and 95th-percentile Hausdorff distance were calculated to evaluate the delineation quality for each OAR. Clinical accuracy evaluation was classified into 4 levels: no revision, minor revisions (0% < volumetric revision degrees [VRD] ≤ 10%), moderate revisions (10% ≤ VRD < 20%), and major revisions (VRD ≥20%). RESULTS: For all OARs, AbsegNet achieved a mean Dice similarity coefficient of 86.73%, 85.65%, and 88.04% in cohorts 1, 2, and 3, respectively, and a mean 95th-percentile Hausdorff distance of 8.92, 10.18, and 12.40 mm, respectively. The performance of AbsegNet outperformed SwinUNETR, DeepLabV3+, Attention-UNet, UNet, and 3D-UNet. When experts evaluated contours from cohorts 4 and 5, 4 OARs (liver, kidney_L, kidney_R, and spleen) of all patients were scored as having no revision, and over 87.5% of patients with contours of the stomach, esophagus, adrenals, or rectum were considered as having no or minor revisions. Only 15.0% of patients with colon and small bowel contours required major revisions. CONCLUSIONS: We propose a novel deep-learning model to delineate OARs on diverse data sets. Most contours produced by AbsegNet are accurate and robust and are, therefore, clinically applicable and helpful to facilitate radiation therapy workflow.

19.
IEEE Trans Med Imaging ; 42(9): 2539-2551, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030841

RESUMO

In clinical practice, it is desirable for medical image segmentation models to be able to continually learn on a sequential data stream from multiple sites, rather than a consolidated dataset, due to storage cost and privacy restrictions. However, when learning on a new site, existing methods struggle with a weak memorizability for previous sites with complex shape and semantic information, and a poor explainability for the memory consolidation process. In this work, we propose a novel Shape and Semantics-based Selective Regularization ( [Formula: see text]) method for explainable cross-site continual segmentation to maintain both shape and semantic knowledge of previously learned sites. Specifically, [Formula: see text] method adopts a selective regularization scheme to penalize changes of parameters with high Joint Shape and Semantics-based Importance (JSSI) weights, which are estimated based on the parameter sensitivity to shape properties and reliable semantics of the segmentation object. This helps to prevent the related shape and semantic knowledge from being forgotten. Moreover, we propose an Importance Activation Mapping (IAM) method for memory interpretation, which indicates the spatial support for important parameters to visualize the memorized content. We have extensively evaluated our method on prostate segmentation and optic cup and disc segmentation tasks. Our method outperforms other comparison methods in reducing model forgetting and increasing explainability. Our code is available at https://github.com/jingyzhang/S3R.


Assuntos
Processamento de Imagem Assistida por Computador , Disco Óptico , Masculino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Semântica , Aprendizado de Máquina , Próstata
20.
Radiother Oncol ; 180: 109480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657723

RESUMO

BACKGROUND AND PURPOSE: The problem of obtaining accurate primary gross tumor volume (GTVp) segmentation for nasopharyngeal carcinoma (NPC) on heterogeneous magnetic resonance imaging (MRI) images with deep learning remains unsolved. Herein, we reported a new deep-learning method than can accurately delineate GTVp for NPC on multi-center MRI scans. MATERIAL AND METHODS: We collected 1057 patients with MRI images from five hospitals and randomly selected 600 patients from three hospitals to constitute a mixed training cohort for model development. The resting patients were used as internal (n = 259) and external (n = 198) testing cohorts for model evaluation. An augmentation-invariant strategy was proposed to delineate GTVp from multi-center MRI images, which encouraged networks to produce similar predictions for inputs with different augmentations to learn invariant anatomical structure features. The Dice similarity coefficient (DSC), 95 % Hausdorff distance (HD95), average surface distance (ASD), and relative absolute volume difference (RAVD) were used to measure segmentation performance. RESULTS: The model-generated predictions had a high overlap ratio with the ground truth. For the internal testing cohorts, the average DSC, HD95, ASD, and RAVD were 0.88, 4.99 mm, 1.03 mm, and 0.13, respectively. For external testing cohorts, the average DSC, HD95, ASD, and RAVD were 0.88, 3.97 mm, 0.97 mm, and 0.10, respectively. No significant differences were found in DSC, HD95, and ASD for patients with different T categories, MRI thickness, or in-plane spacings. Moreover, the proposed augmentation-invariant strategy outperformed the widely-used nnUNet, which uses conventional data augmentation approaches. CONCLUSION: Our proposed method showed a highly accurate GTVp segmentation for NPC on multi-center MRI images, suggesting that it has the potential to act as a generalized delineation solution for heterogeneous MRI images.


Assuntos
Aprendizado Profundo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Carga Tumoral , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Nasofaríngeas/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA