Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Allergy Clin Immunol ; 144(1): 171-182, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30578874

RESUMO

BACKGROUND: Fibrosis and stricture are major comorbidities in patients with eosinophilic esophagitis (EoE). Lysyl oxidase (LOX), a collagen cross-linking enzyme, has not been investigated in the context of EoE. OBJECTIVE: We investigated regulation of epithelial LOX expression as a novel biomarker and functional effector of fibrostenotic disease conditions associated with EoE. METHODS: LOX expression was analyzed by using RNA-sequencing, PCR assays, and immunostaining in patients with EoE; cytokine-stimulated esophageal 3-dimensional organoids; and fibroblast-epithelial cell coculture, the latter coupled with fluorescence-activated cell sorting. RESULTS: Gene ontology and pathway analyses linked TNF-α and LOX expression in patients with EoE, which was validated in independent sets of patients with fibrostenotic conditions. TNF-α-mediated epithelial LOX upregulation was recapitulated in 3-dimensional organoids and coculture experiments. We find that fibroblast-derived TNF-α stimulates epithelial LOX expression through activation of nuclear factor κB and TGF-ß-mediated signaling. In patients receiver operating characteristic analyses suggested that LOX upregulation indicates disease complications and fibrostenotic conditions in patients with EoE. CONCLUSIONS: There is a novel positive feedback mechanism in epithelial LOX induction through fibroblast-derived TNF-α secretion. Esophageal epithelial LOX might have a role in the development of fibrosis with substantial translational implications.


Assuntos
Biomarcadores/metabolismo , Esofagite Eosinofílica/genética , Células Epiteliais/fisiologia , Esôfago/patologia , Fibroblastos/fisiologia , Proteína-Lisina 6-Oxidase/genética , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Idoso , Células Cultivadas , Criança , Pré-Escolar , Técnicas de Cocultura , Constrição Patológica , Esofagite Eosinofílica/diagnóstico , Feminino , Fibrose , Ontologia Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteína-Lisina 6-Oxidase/metabolismo , Regulação para Cima , Adulto Jovem
2.
Allergy ; 74(12): 2449-2460, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31267532

RESUMO

BACKGROUND: Germline-encoded innate immune pattern recognition receptors (PRR) are expressed at epithelial surfaces and modulate epithelial defenses. Evidence suggests that stimulation of the Toll-like receptor (TLR) family of PRR may regulate epithelial barrier integrity by upregulating tight junction (TJ) complex protein expression, but it is not known whether this mechanism is utilized in esophageal epithelial cells. TJ complex proteins maintain intact barrier function and are dysregulated in atopic disorders including eosinophilic esophagitis. METHODS: Pattern recognition receptors expression was assessed in EoE and control primary esophageal epithelial cells, demonstrating robust expression of TLR2 and TLR3. The three-dimensional air-liquid interface culture (ALI) model was used to test whether TLR2 or TLR3 stimulation alters epithelial barrier function using an in vitro model of human epithelium. Transepithelial electrical resistance (TEER) and FITC-Dextran permeability were evaluated to assess membrane permeability. ALI cultures were evaluated by histology, immunohistochemistry, Western blotting, and chromatin immunoprecipitation (ChIP). RESULTS: TLR3 stimulation did not change TEER in the ALI model. TLR2 stimulation increased TEER (1.28- to 1.31-fold) and decreased paracellular permeability to FITC-Dextran, and this effect was abolished by treatment with anti-TLR2 blocking antibody. TJ complex proteins claudin-1 and zonula occludens-1 were upregulated following TLR2 stimulation, and ChIP assay demonstrated altered histone 4 acetyl binding at the TJP1 enhancer and CLDN1 enhancer and promoter following zymosan treatment, implying the occurrence of durable chromatin changes. CONCLUSIONS: Our findings implicate the TLR2 pathway as a potential regulator of esophageal epithelial barrier function and suggest that downstream chromatin modifications are associated with this effect.


Assuntos
Mucosa Esofágica/metabolismo , Receptor 2 Toll-Like/agonistas , Células Cultivadas , Células Epiteliais/metabolismo , Mucosa Esofágica/patologia , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Receptores de Reconhecimento de Padrão/metabolismo , Junções Íntimas , Receptores Toll-Like/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 17(6): 923-937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38340809

RESUMO

BACKGROUND & AIMS: Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS: We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS: Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS: Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.


Assuntos
Diferenciação Celular , Esofagite Eosinofílica , Organoides , Proteína-Lisina 6-Oxidase , Humanos , Esofagite Eosinofílica/patologia , Esofagite Eosinofílica/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Organoides/metabolismo , Organoides/patologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Mucosa Esofágica/patologia , Mucosa Esofágica/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Esôfago/patologia , Transdução de Sinais , Análise de Célula Única , Proteínas Morfogenéticas Ósseas/metabolismo
4.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034590

RESUMO

Background & Aims: Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is upregulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. Methods: We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)-13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse transcription-polymerase chain reaction, western blot, histology, and functional analyses of barrier integrity. Results: Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL-13 in differentiated cells. LOX-overexpressing organoids demonstrated suppressed basal and upregulated differentiation markers. Additionally, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL-13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified enriched bone morphogenetic protein (BMP) signaling pathway compared to wild type organoids. Particularly, LOX overexpression increased BMP2 and decreased BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. Conclusions: Our data support a model whereby LOX exhibits non-canonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of BMP pathway in esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.

5.
J Invest Dermatol ; 142(7): 1882-1892.e5, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34883044

RESUMO

The upregulation of the adaptor protein NUMB triggers melanocytic differentiation from multipotent skin stem cells, which share many properties with aggressive melanoma cells. Although NUMB acts as a tumor suppressor in various human cancer types, little is known about its role in melanoma. In this study, we investigated the role of NUMB in melanoma progression and its regulatory mechanism. Analysis of The Cancer Genome Atlas melanoma datasets revealed that high NUMB expression in melanoma tissues correlates with improved patient survival. Moreover, NUMB expression is downregulated in metastatic melanoma cells. NUMB knockdown significantly increased the invasion potential of melanoma cells in a three-dimensional collagen matrix in vitro and in the lungs of a mouse model in vivo; it also significantly upregulated the expression of the NOTCH target gene CCNE. Previous studies suggested that Wnt signaling increases NUMB expression. By mimicking Wnt stimulation through glycogen synthase kinase-3 inhibition, we increased NUMB expression in melanoma cells. Furthermore, a glycogen synthase kinase-3 inhibitor reduced the invasion of melanoma cells in a NUMB-dependent manner. Together, our results suggest that NUMB suppresses invasion and metastasis in melanoma, potentially through its regulation of the NOTCH‒CCNE axis and that the inhibitors that upregulate NUMB can exert therapeutic effects in melanoma.


Assuntos
Melanoma , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Linhagem Celular Tumoral , Quinases da Glicogênio Sintase/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Via de Sinalização Wnt
6.
Cancer Res ; 81(20): 5230-5241, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34462276

RESUMO

Metastatic melanoma is challenging to clinically address. Although standard-of-care targeted therapy has high response rates in patients with BRAF-mutant melanoma, therapy relapse occurs in most cases. Intrinsically resistant melanoma cells drive therapy resistance and display molecular and biologic properties akin to neural crest-like stem cells (NCLSC) including high invasiveness, plasticity, and self-renewal capacity. The shared transcriptional programs and vulnerabilities between NCLSCs and cancer cells remains poorly understood. Here, we identify a developmental LPAR1-axis critical for NCLSC viability and melanoma cell survival. LPAR1 activity increased during progression and following acquisition of therapeutic resistance. Notably, genetic inhibition of LPAR1 potentiated BRAFi ± MEKi efficacy and ablated melanoma migration and invasion. Our data define LPAR1 as a new therapeutic target in melanoma and highlights the promise of dissecting stem cell-like pathways hijacked by tumor cells. SIGNIFICANCE: This study identifies an LPAR1-axis critical for melanoma invasion and intrinsic/acquired therapy resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Crista Neural/patologia , Células-Tronco Neurais/patologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Prognóstico , Receptores de Ácidos Lisofosfatídicos/genética , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Gastroenterol ; 54(1): 10-18, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30101408

RESUMO

Eosinophilic esophagitis (EoE) is a food allergen-induced inflammatory disorder. EoE is increasingly recognized as a cause of swallowing dysfunction, food impaction and esophageal stricture. Inflammation of the esophageal mucosa involves immune cell infiltrate, reactive epithelial changes and fibroblast activation, culminating in robust tissue remodeling toward esophageal fibrosis characterized by excess collagen deposition in the subepithelial lamina propria. Fibrosis contributes to a unique mechanical property of the EoE-affected esophagus that is substantially stiffer than the normal esophagus. There is a great need to better understand the processes behind esophageal fibrosis in order to foster improved diagnostic tools and novel therapeutics for EoE-related esophageal fibrosis. In this review, we discuss the role of esophageal inflammatory microenvironment that promotes esophageal fibrosis, with specific emphasis upon cytokines-mediated functional epithelial-stromal interplays, recruitment and activation of a variety of effector cells, and tissue stiffness. We then explore the current state of clinical methodologies to detect and treat the EoE-related esophageal stricture.


Assuntos
Alérgenos/imunologia , Esofagite Eosinofílica/imunologia , Hipersensibilidade Alimentar/imunologia , Colágeno/metabolismo , Citocinas/metabolismo , Esofagite Eosinofílica/patologia , Esofagite Eosinofílica/terapia , Mucosa Esofágica/imunologia , Fibrose , Humanos , Mucosa/metabolismo
8.
J Invest Dermatol ; 138(1): 141-149, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28927893

RESUMO

Melanoma cells share many biological properties with neural crest stem cells. Here we show that the homeodomain transcription factor MSX1, which is significantly correlated with melanoma disease progression, reprograms melanocytes and melanoma cells toward a neural crest precursor-like state. MSX1-reprogrammed normal human melanocytes express the neural crest marker p75 and become multipotent. MSX1 induces a phenotypic switch in melanoma, which is characterized by an oncogenic transition from an E-cadherin-high nonmigratory state toward a ZEB1-high invasive state. ZEB1 up-regulation is responsible for the MSX1-induced migratory phenotype in melanoma cells. Depletion of MSX1 significantly inhibits melanoma metastasis in vivo. These results show that neural crest-like reprogramming achieved by a single factor is a critical process for melanoma progression.


Assuntos
Transformação Celular Neoplásica/patologia , Reprogramação Celular/fisiologia , Fator de Transcrição MSX1/fisiologia , Melanócitos/patologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Derme/citologia , Derme/patologia , Progressão da Doença , Células HEK293 , Células-Tronco Embrionárias Humanas , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Fator de Transcrição MSX1/genética , Melanoma/mortalidade , Melanoma/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/fisiologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Neoplasias Cutâneas/mortalidade , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
9.
J Cell Commun Signal ; 10(3): 191-196, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27553358

RESUMO

In the vertebrate embryo, melanocytes arise from the neural crest, migrate to and colonize the basal layer within the skin and skin appendages. Post-migratory melanocytes are securely attached to the basement membrane, and their morphology, growth, adhesion, and migration are under control of neighboring keratinocytes. Melanoma is a malignant tumor originated from melanocytes or their progenitor cells. During melanocyte transformation and melanoma progression, melanocytes lose their interactions with keratinocytes, resulting in uncontrolled proliferation and invasion of the malignant cells. Melanoma cells at the advanced stages often lack melanocytic features and resemble multipotent progenitors, which are a potential melanocyte reservoir in human skin. In this mini-review, we will summarize findings on cell-cell interactions that are responsible for normal melanocyte homeostasis, stem cell self-renewal, and differentiation. Our ultimate goal is to define molecules and pathways, which are essential for normal cell-cell interactions but deregulated in melanoma formation and progression.

10.
J Invest Dermatol ; 135(6): 1521-1532, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25705850

RESUMO

Multipotent stem cells with neural crest-like properties have been identified in the dermis of human skin. These neural crest stem cell (NCSC)-like cells display self-renewal capacity and differentiate into neural crest derivatives, including epidermal pigment-producing melanocytes. NCSC-like cells share many properties with aggressive melanoma cells, such as high migratory capabilities and expression of the neural crest markers. However, little is known about which intrinsic or extrinsic signals determine the proliferation or differentiation of these neural crest-like stem cells. Here we show that, in NCSC-like cells, Notch signaling is highly activated, similar to melanoma cells. Inhibition of Notch signaling reduced the proliferation of NCSC-like cells, induced cell death, and downregulated noncanonical Wnt5a, suggesting that the Notch pathway contributes to the maintenance and motility of these stem cells. In three-dimensional skin reconstructs, canonical Wnt signaling promoted the differentiation of NCSC-like cells into melanocytes. This differentiation was triggered by the endogenous Notch inhibitor Numb, which is upregulated in the stem cells by Wnt7a derived from UV-irradiated keratinocytes. Together, these data reveal a cross talk between the two conserved developmental pathways in postnatal human skin, and highlight the role of the skin microenvironment in specifying the fate of stem cells.


Assuntos
Receptores Notch/metabolismo , Pele/metabolismo , Raios Ultravioleta , Proteínas Wnt/metabolismo , Diferenciação Celular , Linhagem da Célula , Sobrevivência Celular , Humanos , Queratinócitos/metabolismo , Lentivirus/genética , Melanócitos/citologia , Melanócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pigmentação , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fenômenos Fisiológicos da Pele , Células-Tronco/citologia , Proteína Wnt-5a , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA