Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Nutr ; 59(8): 3603-3615, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32078065

RESUMO

PURPOSE: Data from in vitro and animal studies support the preventive effect of tea (Camellia sinensis) against colorectal cancer. Further, many epidemiologic studies evaluated the association between tea consumption and colorectal cancer risk, but the results were inconsistent. We conducted a meta-analysis of prospective cohort studies to systematically assess the association between tea consumption and colorectal cancer risk. METHODS: A comprehensive literature review was conducted to identify the related articles by searching PubMed and Embase up to June, 2019. Summary relative risks (RRs) and 95% confidence intervals (CIs) were calculated using a fixed effect model. RESULTS: Twenty cohort articles were included in the present meta-analysis involving 2,068,137 participants and 21,437 cases. The combined RR of colorectal cancer for the highest vs. lowest tea consumption was determined to 0.97 (95% CI 0.94-1.01) with marginal heterogeneity (I2 = 24.0%, P = 0.093) among all studies. This indicated that tea consumption had no significant association with colorectal cancer risk. Stratified analysis showed that no significant differences were found in all subgroups. We further conducted the gender-specific meta-analysis for deriving a more precise estimation. No significant association was observed between tea consumption and colorectal cancer risk in male (combined RR = 0.97; 95% CI 0.90-1.04). However, tea consumption had a marginal significant inverse impact on colorectal cancer risk in female (combined RR = 0.93; 95% CI 0.86-1.00). Further, we found a stronger inverse association between tea consumption and risk of colorectal cancer among the female studies with no adjustment of coffee intake (RR: 0.90; 95% CI 0.82-1.00, P < 0.05) compared to the female studies that adjusted for coffee intake (RR = 0.97; 95% CI 0.87-1.09, P > 0.05). CONCLUSIONS: Our finding indicates that tea consumption has no significant impact on the colorectal cancer risk in both genders combined, but gender-specific meta-analysis shows that tea consumption has a marginal significant inverse impact on colorectal cancer risk in female.


Assuntos
Neoplasias Colorretais , Chá , Café , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Feminino , Humanos , Masculino , Estudos Prospectivos , Risco , Fatores de Risco
2.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184160

RESUMO

Naturally occurring methylated catechins, especially methylated EGCG in tea leaves are known to have many health benefits. Although the genes involved in methylated EGCG biosynthesis have been studied extensively, the transcriptional factors controlling methylated EGCG biosynthesis are still poorly understood. In the present study, a WRKY domain-containing protein termed CsWRKY57like was identified, which belongs to group IIc of the WRKY family, and contains one conserved WRKY motif. CsWRKY57like was found to localize in the nucleus, function as a transcriptional activator, and its expression positively correlated with methylated EGCG level. In addition, CsWRKY57like activated the transcription of three genes related to methylated EGCG biosynthesis, including CCoAOMT, CsLAR, and CsDFR by specifically interacting with their promoters via binding to the cis-acting element (C/T)TGAC(T/C). Further assays revealed that CsWRKY57like physically interacts with CsVQ4, and participates in the metabolic regulation of O-methylated catechin biosynthesis. Collectively, we conclude that CsWRKY57like may positively impact the biosynthesis of methylated EGCG in the tea plant, which comprehensively enriches the regulatory network of WRKY TFs associated with methylated EGCG and provide a potential strategy for the breeding of specific tea plant cultivars with high methylated EGCG .

3.
J Agric Food Chem ; 69(48): 14530-14543, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34752089

RESUMO

Fu brick tea (FBT) is a microbial-fermented tea, which is produced by the solid-state fermentation of tea leaves. Previous studies have proved that FBT aqueous extracts could attenuate obesity and gut microbiota dysbiosis. However, the bioactive components in FBT that contribute to these activities remain unclear. In this study, we aimed to investigate the effects of FBT polyphenols (FBTPs) on obesity, gut microbiota, and gut microbiota-related intestinal oxidative stress and barrier function and to further investigate whether the antiobesity effect of FBTPs was dependent on the alteration of gut microbiota. The results showed that FBTP supplementation effectively attenuated obesity in high-fat diet (HFD)-fed rats. FBTP supplementation improved the intestinal oxidative stress and intestinal barrier function, including intestinal inflammation and the integrity of the intestinal barrier. Furthermore, FBTP intervention significantly attenuated HFD-induced gut microbiota dysbiosis, characterized by increased phylogenetic diversity and decreased Firmicutes/Bacteroidetes ratio. Certain core microbes, including Akkermansia muciniphila, Alloprevotella, Bacteroides, and Faecalibaculum, were also found to be improved by FBTPs. Moreover, the antiobesity effect of FBTPs was gut microbiota-dependent, as demonstrated by a fecal microbiota transplantation experiment. Collectively, we concluded that FBTPs reduced obesity by modulating the gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function. Therefore, FBTPs may be used as prebiotic agents to treat obesity and gut microbiota dysbiosis in obese individuals.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Estresse Oxidativo , Filogenia , Polifenóis , Ratos , Chá
4.
Front Plant Sci ; 12: 606962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746994

RESUMO

Purple-leaf tea cultivars are known for their specific chemical composition that greatly influences tea bioactivity and plant resistance. Some studies have tried to reveal the purple-leaf formation mechanism of tea by comparing the purple new leaves and green older leaves in the same purple-leaf tea cultivar. It has been reported that almost all structural genes involved in anthocyanin/flavonoid biosynthesis were down-regulated in purple-leaf tea cultivars when the purple new leaves become green older leaves. However, anthocyanin/flavonoid biosynthesis is also affected by the growth period of tea leaves, gradually decreasing as new tea leaves become old tea leaves. This leads to uncertainty as to whether the purple-leaf formation is attributed to the high expression of structural genes in anthocyanin/flavonoid biosynthesis. To better understand the mechanisms underlying purple-leaf formation, we analyzed the biosynthesis of three pigments (chlorophylls, carotenoids, and anthocyanins/flavonoids) by integrated metabolic and gene expression analyses in four purple-leaf tea cultivars including Camellia sinensis var. sinensis and var. assamica. Green-leaf and yellow-leaf cultivars were employed for comparison. The purple-leaf phenotype was mainly attributed to high anthocyanins and low chlorophylls. The purple-leaf phenotype led to other flavonoid changes including lowered monomeric catechin derivatives and elevated polymerized catechin derivatives. Gene expression analysis revealed that 4-coumarate: CoA ligase (4CL), anthocyanidin synthase (ANS), and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) genes in the anthocyanin biosynthetic pathway and the uroporphyrinogen decarboxylase (HEME) gene in the chlorophyll biosynthetic pathway were responsible for high anthocyanin and low chlorophyll, respectively. These findings provide insights into the mechanism of purple-leaf formation in tea cultivars.

5.
Food Chem ; 312: 126043, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31896450

RESUMO

Dark tea is a unique fermented tea produced by solid-state fermentation of tea leaves (Camellia sinensis). It includes ripe Pu-erh tea, Fu brick tea, Liupao tea, and other teas. Microbial fermentation is considered to be the key factor controlling the quality of dark tea. It involves a series of reactions that modify the chemical constituents of tea leaves. These chemical conversions during microbial fermentation of dark tea are associated with a variety of functional core microorganisms. Further, Multi-omics approaches have been used to reveal the microbial impact on the conversion of the chemical components in dark tea. In the present review, we provide an overview of the most recent advances in the knowledge of the microbial bioconversion of the chemical components in dark tea, including the chemical composition of dark tea, microbial community composition and dynamics during the fermentation process, and the role of microorganisms in biotransformation of chemical constituents.


Assuntos
Camellia sinensis/química , Chá/química , Camellia sinensis/metabolismo , Fermentação , Humanos , Microbiota , Folhas de Planta/química , Folhas de Planta/metabolismo , Chá/metabolismo
6.
Gene ; 699: 8-15, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30851424

RESUMO

Epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) in tea (Camellia sinensis (L.) O. Kuntze) is a major source of O-methylated catechin and renowned for a wide range of health effects. However, the transcriptional regulation mechanisms of EGCG3"Me biosynthesis remain unclear. In the present work, the basic Helix-Loop-Helix (bHLH) transcription factor, designated as CsbHLH62, belonging to GBOF group of bHLH families, was isolated and characterized from Camellia sinensis. CsbHLH62 contains an Open Reading Frame of 1662 bp and encodes a polypeptide of 553 amino acids. Subcellular location and transcriptional activity analysis showed it as a nucleus protein and possessed transcriptional inhibition activity. Furthermore, the expression of CsbHLH62 was decreased during EGCG3"Me accumulation. More importantly, E-box motifs (5'-CANNTG-3') were found in the promoters of CCoAOMT, CsLAR, and CsDFR, and further transient expression assays showed that CsbHLH62 repressed the transcription of CCoAOMT, CsLAR, and CsDFR. Collectively, these results suggest that CsbHLH62 acts as a transcriptional repressor that might be negatively affecting the accumulation of EGCG3"Me. These findings provide novel insights into the regulatory mechanism of EGCG3"Me biosynthesis, which might help to breed high EGCG3"Me-content tea plants.


Assuntos
Camellia sinensis/genética , Ácido Gálico/análogos & derivados , Proteínas de Plantas/genética , Transcrição Gênica/genética , Catequina/genética , Ácido Gálico/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Metiltransferases/metabolismo , Fases de Leitura Aberta/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Chá/genética , Chá/metabolismo
7.
Yi Chuan Xue Bao ; 33(6): 565-72, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16800388

RESUMO

By using genome in situ hybridization (GISH) on root somatic chromosomes of allotetraploid derived from the cross Gossypium arboreum x G. bickii with genomic DNA (gDNA) of G. bickii as a probe, two sets of chromosomes, consisting of 26 chromosomes each, were easily distinguished from each other by their distinctive hybridization signals. GISH analysis directly proved that the hybrid G. arboreum x G. bickii is an allotetraploid amphiploid. The karyotype formula of the species was 2n = 4x = 52 = 46m (4sat) + 6sm (4sat). We identified four pairs of satellites with two pairs in each sub-genome. FISH analysis using 45S rDNA as a probe showed that the cross G. arboreum x G. bickii contained 14 NORs. At least five pairs of chromosomes in the G sub-genome showed double hybridization (red and blue) in their long arms, which indicates that chromatin introgression from the A sub-genome had occurred.


Assuntos
Cromossomos de Plantas/genética , Gossypium/genética , Cariotipagem , Hibridização de Ácido Nucleico/métodos , Poliploidia , Cromatina , Cromossomos de Plantas/diagnóstico por imagem , Cruzamentos Genéticos , DNA Ribossômico/análise , Genoma de Planta , Gossypium/ultraestrutura , Ultrassonografia
8.
J Zhejiang Univ Sci B ; 16(4): 296-303, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25845363

RESUMO

miRNAs are a class of conserved, small, endogenous, and non-protein-coding RNA molecules with 20-24 nucleotides (nt) in length that function as post-transcriptional modulators of gene expression in eukaryotic cells. Functional studies have demonstrated that plant miRNAs are involved in the regulation of a wide range of plant developmental processes. To date, however, no research has been carried out to study the expression profiles of miRNAs in Gossypium raimondii, a model cotton species. We selected 16 miRNAs to profile their tissue-specific expression patterns in G. raimondii four different tissues, and these miRNAs are reported to play important roles in plant growth and development. Our results showed that the expression levels of these miRNAs varied significantly from one to another in a tissue-dependent manner. Eight miRNAs, including miR-159, miR-162, miR-164, miR-172, miR-390, miR-395, miR-397, and miR-398, exhibited exclusively high expression levels in flower buds, suggesting that these miRNAs may play significant roles in floral development. The expression level of miR-164 was relatively high in shoots beside flower buds, implying that the function of miR-164 is not only limited to floral development but it may also play an important role in shoot development. Certain miRNAs such as miR-166 and miR-160 were extremely highly expressed in all of the four tissues tested compared with other miRNAs investigated, suggesting that they may play regulatory roles at multiple development stages. This study will contribute to future studies on the functional characterization of miRNAs in cotton.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/fisiologia , MicroRNAs/metabolismo , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA