Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; 18(36): e2201869, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713246

RESUMO

The regeneration of 3D tissue constructs with clinically relevant sizes, structures, and hierarchical organizations for translational tissue engineering remains challenging. 3D printing, an additive manufacturing technique, has revolutionized the field of tissue engineering by fabricating biomimetic tissue constructs with precisely controlled composition, spatial distribution, and architecture that can replicate both biological and functional native tissues. Therefore, 3D printing is gaining increasing attention as a viable option to advance personalized therapy for various diseases by regenerating the desired tissues. This review outlines the recently developed 3D printing techniques for clinical translation and specifically summarizes the applications of these approaches for the regeneration of cartilage, bone, and osteochondral tissues. The current challenges and future perspectives of 3D printing technology are also discussed.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Biomimética , Osso e Ossos , Cartilagem , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Nano Lett ; 20(7): 5149-5158, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574064

RESUMO

Diabetic wound healing remains a critical challenge due to its vulnerability to multidrug-resistant (MDR) bacterial infection, as well as the hyperglycemic and oxidative wound microenvironment. Herein, an injectable multifunctional hydrogel (FEMI) was developed to simultaneously overcome these hurdles. The FEMI hydrogel was fabricated through a Schiff-based reaction between ε-polylysine (EPL)-coated MnO2 nanosheets (EM) and insulin-loaded self-assembled aldehyde Pluronic F127 (FCHO) micelles. Through a synergistic combination of EPL and "nanoknife-like" MnO2 nanosheets, the FEMI hydrogel exhibited extraordinary antimicrobial capacities against MDR bacteria. The MnO2 nanoenzyme reshaped the hostile oxidative wound microenvironment by decomposing the endogenous H2O2 into O2. Meanwhile, the pH/redox dual-responsive FEMI hydrogel achieved a sustained and spatiotemporal controlled release of insulin to regulate the blood glucose. Our FEMI hydrogel demonstrated an accelerated MDR bacteria-infected diabetic wound healing in vivo and represents a versatile strategy for healing a broad range of tissue damages caused by diabetes.


Assuntos
Diabetes Mellitus , Hidrogéis , Bactérias , Humanos , Peróxido de Hidrogênio , Compostos de Manganês , Óxidos , Cicatrização
3.
J Environ Manage ; 245: 173-186, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152961

RESUMO

Converting straw to biochar (BC) followed by successive application to soil has been increasingly suggested as a multi-win approach for soil fertility improvement, carbon (C) sequestration and efficient disposal of straw residues in intensive cropping agroecosystems. However, different soil types response differently in terms of crop growth and non-CO2 greenhouse gas (GHG) emissions after BC application. Furthermore, few studies have comprehensively evaluated the net global warming potential (GWP) and net ecosystem economic benefits (NEEB) after long-term BC incorporation across representative soil types in China. A five-year outdoor column experiment was conducted using three rice-wheat rotated paddy soils and three millet-wheat rotated upland soils developed from different parent materials. Rice straw BC application rates of 0, 2.25 and 11.3 Mg ha-1 were used in each crop season with identical doses of NPK fertilizers. Compared with the no BC controls, BC significantly boosted crop growth, enhanced C sequestration, and decreased cumulative N2O and CH4 emissions in all six soils over five rotation cycles. The response of the upland soils to BC was better in terms of crop growth and N2O mitigation, whereas the soil organic carbon (SOC) increment and CH4 mitigation were less effective compared with the paddy soils. Net GWP decreased 0.6-19 fold after BC application; however, given the low trade price of CO2 (0.21 × 103 CNY Mg-1), only a small contribution was made in terms of C costs to the NEEB. The BC-induced NEEB was mainly dependent on grain yield gains and BC costs. These findings highlight that widespread adoption of successive straw BC application to farmland requires an increase in crop yield and substantial lowering of the BC cost regardless of the soil type. From the standpoints of agronomics, environment and economics, acid upland soil shows most potential in terms of BC application.


Assuntos
Sequestro de Carbono , Oryza , Agricultura , Carvão Vegetal , China , Produção Agrícola , Ecossistema , Solo
4.
Macromol Rapid Commun ; 37(1): 47-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26479068

RESUMO

Polymer microcavities with adjustable openings and surface roughness are fabricated on a large scale via single-hole poly(glycidyl methacrylate) (PGMA) swelling seed particles. The size of openings of these microcavities can be adjusted by changing the amount of hydrophilic monomer, and the degree of surface roughness is easily regulated relying on the adjustment of the polarity of monomer. Furthermore, the morphology of PGMA/poly(styrene-methacrylic acid) (PGMA/P(S-MAA)) microparticles from microcavity to erythrocyte shape is controlled by the polarity of seed surface. From transmission electron microscopy images of PGMA/P(S-MAA) microparticles, a fresh polymer particle appears in the cavity. To confirm this phenomenon, thermal annealing process in dioxane/water solution is carried out. Considering the flexibility of polymers, the openings and closing of the prepared microparticles are regulated following the increase in volume ratio of dioxane/water. Ball-in-bowl-shaped PGMA/P(S-MAA) microparticles are further presented, which proves secondary nucleation of monomer in the polymerization stage.

6.
J Environ Sci (China) ; 26(3): 617-25, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079275

RESUMO

Tree species and temperature change arising from seasonal variation or global warming are two important factors influencing N2O and NO emissions from forest soils. However, few studies have examined the effects of temperatures (5-35°C) on the emissions of forest soil N2O and NO in typical subtropical region. A short-term laboratory experiment was carried out to investigate the influence of temperature changes (5-35°C) on soil N2O and NO emissions under aerobic conditions in two contrasting (broad-leaved and coniferous) subtropical acidic forest types in China. The results showed that the temporal pattern of N2O and NO emissions between the three lower temperatures (5°C, 15°C, and 25°C) and 35°C was significantly different for both broad-leaved and coniferous forest soils. The effects of temperature on soil N2O and NO emission rates varied between broad-leaved and coniferous forest soils. Both N2O and NO emissions increased exponentially with an increase in temperature in the broad-leaved forest soil. However, N2O and NO emissions in the coniferous forest soil were not sensitive to temperature change between 5°C and 25°C. N2O and NO emission rates were significantly higher in the broad-leaved forest soil as compared with the coniferous forest soil at all incubation temperatures except 5°C. These results suggest that the broad-leaved forest could contribute more N2O and NO emissions than the coniferous forest for most of the year in the subtropical region of China.


Assuntos
Ecossistema , Óxido Nítrico/análise , Óxido Nitroso/análise , Solo/química , Árvores , Dióxido de Carbono/análise , China , Nitrificação , Ciclo do Nitrogênio , Temperatura
7.
Neural Netw ; 169: 143-153, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37890364

RESUMO

The development of the Industrial Internet of Things (IIoT) in recent years has resulted in an increase in the amount of data generated by connected devices, creating new opportunities to enhance the quality of service for machine learning in the IIoT through data sharing. Graph neural networks (GNNs) are the most popular technique in machine learning at the moment because they can learn extremely precise node representations from graph-structured data. Due to privacy issues and legal restrictions of clients in industrial IoT, it is not permissible to directly concentrate vast real-world graph-structured datasets for training on GNNs. To resolve the aforementioned difficulties, this paper proposes a federal graph learning framework based on Bayesian inference (BI-FedGNN) that performs effectively in the presence of noisy graph structure information or missing strong relational edges. BI-FedGNN extends Bayesian Inference (BI) to the process of Federal Graph Learning (FGL), adding random samples with weights and biases to the client-side local model training process, improving the accuracy and generalization ability of FGL in the training process by rendering the graph structure data involved in GNNs training more similar to the graph structure data existing in the real world. Through extensive experimental tests, the results show that BI-FedGNN has about 0.5%-5.0% accuracy improvement over other baselines of federal graph learning. In order to expand the applicability of BI-FedGNN, experiments are carried out on heterogeneous graph datasets, and the results indicate that BI-FedGNN can also have at least 1.4% improvement in classification accuracy.


Assuntos
Generalização Psicológica , Disseminação de Informação , Humanos , Teorema de Bayes , Internet , Redes Neurais de Computação
8.
Sci Total Environ ; 934: 173226, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768729

RESUMO

Carbon:nitrogen:phosphorus (C:N:P) stoichiometry plays a vital role in regulating P transformation in agriculture ecosystems. However, the impact of balanced C:N:P stoichiometry in paddy soil, particularly regarding relative soil P transformation, remains unknown. This study explores the response of C:N:P stoichiometry to manure substitution and its regulatory role in soil P transformation, along with the associated release risk to the environment. Based on a 5-year field study, our findings reveal that replacing 30 % of chemical P fertilizer with pig manure (equal total NPK amounts with chemical P fertilizer treatment, named CFM) increased soil total C without altering soil total P, resulting in an elevated soil C:P ratio, despite the homeostasis of crop stoichiometry. This increase promoted microbial diversity and the accumulation of organic P in the soil. The Proteobacteria and Actinobacteria produced lower C:PEEA metabolism together, and enhanced in vivo turnover of P. Additionally, by integrating high-resolution dialysis (HR-Peeper), diffusive gradients in thin films (DGT), DGT-induced fluxes in the soil (DIFS), and sediment P release risk index (SPRRI) models, we observed that, in addition to organic P, CFM simultaneously increased soil Al-P, thereby weakening the diffusion and resupply capacity of P from soil solids to the solution. Consequently, this decrease in P release risk to the environment was demonstrated. Overall, this study establishes a connection between crop-soil-enzyme C:N:P stoichiometry, soil microorganisms, and soil P biogeochemical processes. The study further evaluates the P release risk to the environment, providing a novel perspective on both the direct and indirect effects of manure substitution on soil P cycling.


Assuntos
Agricultura , Fertilizantes , Esterco , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Fósforo/análise , Solo/química , Esterco/análise , Nitrogênio/análise , Fertilizantes/análise , Carbono/análise , Produtos Agrícolas , Poluentes do Solo/análise
9.
Sci Total Environ ; 873: 162141, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764557

RESUMO

Peach (Prunus persica L.), as a traditional kind of fruits in China, was extremely dependent on large application of nitrogen (N) fertilizer to maintain high fruit yield and commercial income, resulting in raising environmental damage risk. Therefore, a three-year field trail was conducted to clarify the environmental N loss under conventional management, investigate the positive effects of optimal N management, legume cover and 3,4-dimethylpyrazole phosphate (DMPP) on N input/output and the net ecosystem economic benefits (NEEB). There are four treatments in this study: conventional fertilizer management with 521.1 kg N ha-1 yr-1 input (CU); optimal N management including 406.4 kg N ha-1 yr-1 input and deep fertilization (OP); DMPP was added to OP at rate of 1 % (w/w) (OPD); legume (white clover) was covered to OPD (OPDG). Results showed 102.9 kg N ha-1 was removed by annual fruit and residues (including pruned branches, pruned and fallen leaves), while 70.2 kg N ha-1 was lost to the environment by ammonia (NH3), nitrous oxide (N2O) and N runoff loss under the conventional fertilizer management. While, the optimal N management mitigated NH3 volatilization about 49.3 %, further added DMPP abated N2O emission by 61.4 %, besides covered white clover lowered N runoff loss by 64.5 %. The NEEB results revealed that optimal N management combined with added DMPP and covered white clover could minimize the production cost, reduce environmental damage cost by 35.9 %, increase fruit yield by 10.3 % and achieved the maximum NEEB with improvement of 27.1 %, in comparison of the conventional fertilizer management. Generally, conventional peach cultivation constituted overwhelming N loss to raise potential environmental risk. While, extending mode of optimized N management combined with DMPP and legume cover could not only realize high fruit revenue, but also abate environmental N losses, thereby should be considered as effective strategy for sustainable fruit cropping systems.


Assuntos
Agricultura , Fabaceae , Prunus persica , Trifolium , Agricultura/métodos , Iodeto de Dimetilfenilpiperazina , Ecossistema , Fertilizantes/análise , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Solo/química , Verduras
10.
Nat Commun ; 14(1): 6953, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907476

RESUMO

Immune checkpoints play key roles in maintaining self-tolerance. Targeted potentiation of the checkpoint molecule PD-L1 through in situ manipulation offers clinical promise for patients with autoimmune diseases. However, the therapeutic effects of these approaches are often compromised by limited specificity and inadequate expression. Here, we report a two-step dual-anchor coupling strategy for enhanced immobilization of PD-L1 on target endogenous cells by integrating bioorthogonal chemistry and physical insertion of the cell membrane. In both type 1 diabetes and rheumatoid arthritis mouse models, we demonstrate that this approach leads to elevated and sustained conjugation of PD-L1 on target cells, resulting in significant suppression of autoreactive immune cell activation, recruitment of regulatory T cells, and systematic reshaping of the immune environment. Furthermore, it restores glucose homeostasis in type 1 diabetic mice for over 100 days. This specific in situ bioengineering approach potentiates the functions of PD-L1 and represents its translational potential.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Humanos , Camundongos , Animais , Antígeno B7-H1/metabolismo , Doenças Autoimunes/terapia , Diabetes Mellitus Tipo 1/terapia
11.
Sci Adv ; 9(20): eadg6007, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196084

RESUMO

Regulatory T (Treg) cells underlie multiple autoimmune disorders and potentialize an anti-inflammation treatment with adoptive cell therapy. However, systemic delivery of cellular therapeutics often lacks tissue targeting and accumulation for localized autoimmune diseases. Besides, the instability and plasticity of Treg cells also induce phenotype transition and functional loss, impeding clinical translation. Here, we developed a perforated microneedle (PMN) with favorable mechanical performance and a spacious encapsulation cavity to support cell survival, as well as tunable channels to facilitate cell migration for local Treg therapy of psoriasis. In addition, the enzyme-degradable microneedle matrix could release fatty acid in the hyperinflammatory area of psoriasis, enhancing the Treg suppressive functions via the fatty acid oxidation (FAO)-mediated metabolic intervention. Treg cells administered through PMN substantially ameliorated psoriasis syndrome with the assistance of fatty acid-mediated metabolic intervention in a psoriasis mouse model. This tailorable PMN could offer a transformative platform for local cell therapy to treat a variety of diseases.


Assuntos
Doenças Autoimunes , Psoríase , Camundongos , Animais , Linfócitos T Reguladores , Psoríase/terapia , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças
12.
Nat Commun ; 14(1): 3431, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301874

RESUMO

Effective reprogramming of chronic wound healing remains challenging due to the limited drug delivery efficacy hindered by physiological barriers, as well as the inappropriate dosing timing in distinct healing stages. Herein, a core-shell structured microneedle array patch with programmed functions (PF-MNs) is designed to dynamically modulate the wound immune microenvironment according to the varied healing phases. Specifically, PF-MNs combat multidrug-resistant bacterial biofilm at the early stage via generating reactive oxygen species (ROS) under laser irradiation. Subsequently, the ROS-sensitive MN shell gradually degrades to expose the MN core component, which neutralizes various inflammatory factors and promotes the phase transition from inflammation to proliferation. In addition, the released verteporfin inhibits scar formation by blocking Engrailed-1 (En1) activation in fibroblasts. Our experiments demonstrate that PF-MNs promote scarless wound repair in mouse models of both acute and chronic wounds, and inhibit the formation of hypertrophic scar in rabbit ear models.


Assuntos
Cicatriz Hipertrófica , Cicatrização , Camundongos , Animais , Coelhos , Cicatrização/fisiologia , Pele/patologia , Espécies Reativas de Oxigênio/metabolismo , Cicatriz Hipertrófica/patologia , Fibroblastos/metabolismo
13.
Sci Total Environ ; 831: 154917, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35364170

RESUMO

Animal manures are reported as good substitutes for chemical fertilizers to mobilize soil phosphorus (P). However, the mechanisms on how different types of manures regulate microbial biomass involved in P mobilization remain unclear. In this study, we conducted a two-year field experiment to investigate variations in soil microbial biomass carbon (MBC) and P (MBP) and P fractions after 30% animal manures substitution (pig manure (PM), chicken manure (CM), and dairy manure (DM)) in paddy soil. Furthermore, a 30-day incubation experiment was used to explore the mechanisms of soil P transformation induced by 100% manures addition. Two-year field experiment results showed that, compared to the chemical NPK fertilizer, 30% manure substitution didn't influence rice and wheat yields significantly but decreased soil total P loss from runoff by 3.2%. However, 30% manure substitution significantly enhanced MBC and MBP by 11.3-18.4% and 57.1-81.2%, respectively, which also promoted the transformation of moderately labile P (M-P) to labile P (L-P). Moreover, the incubation experiment also convinced that all manures caused higher MBC than chemical P fertilizer. Meanwhile, compared to the no P fertilizer, manures increased L-P and organic P by 2.7%-14.7% and 6.4%-20.0%, respectively. Redundancy analysis indicated that soil MBC/MBP ratio was the main factor to soil L-P and M-P, indicating that animal manures can improve soil microbial abundance and thus promote M-P to L-P in soil. Among three animal manures, PM could improve the mobilization potential of P mostly, due to the highest C source activity by 13C NMR analysis. Our study indicated that animal manures especially PM can be considered as a good candidate for agricultural P management in paddy soils because of their capacity to promote soil P transformation.


Assuntos
Microbiota , Oryza , Agricultura/métodos , Animais , Carbono/análise , Fertilizantes/análise , Esterco , Fósforo/análise , Solo/química , Suínos
14.
Small Methods ; 6(11): e2200949, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202612

RESUMO

Diabetic wound healing still faces a dilemma because of the hostile hyperglycemic, oxidative, and easily-infected wound microenvironment. In addition, advanced glycation end products (AGEs) further impede wound repair by altering the immunological balance. Herein, ceria nanorods with distinctive antiglycative and excellent antioxidative capacities are innovatively introduced into a self-healing and erasable hydrogel, which could reshape the wound microenvironment by expediting hemostasis, inhibiting infection, reducing AGEs, and continuously depleting reactive oxygen species. The remitted oxidative stress and glycosylation synergistically regulate inflammatory responses, and promote revascularization and extracellular matrix deposition, resulting in accelerated diabetic wound repair. This study provides a highly efficient strategy for constructing nanoenzyme-reinforced antiglycative hydrogel that regulates every wound healing stage for diabetic wound management.


Assuntos
Diabetes Mellitus , Infecção dos Ferimentos , Humanos , Hidrogéis/uso terapêutico , Antioxidantes/farmacologia , Cicatrização/fisiologia , Infecção dos Ferimentos/tratamento farmacológico
15.
Sci Total Environ ; 821: 153344, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085626

RESUMO

Rice-wheat cropping system (RWCS), the major rice-based cropping system, constitutes a significant source of N-related greenhouse gas (GHG) emission due to the unique wet-dry alternation process. Biochar is often highlighted as a potential solution for reducing fertilizer N losses, hence, understanding its effects on Ngr emissions (mainly NH3 and N2O) under wet-dry conditions is critical to inform strategies for GHG mitigation. This study investigated the responses of NH3 and N2O emissions to biochar amendments during rice and wheat seasons based on in situ measurements under ten-year successive straw biochar application in RWCS. Our results indicated that 43.7% and 89.9% of N2O and NH3 emissions were emitted during rice season and 56.3% and 10.1% during wheat season, respectively. Long-term biochar amendment was found to play significant role in mitigating NH3 emissions (38.6-43.9%), which could be attributed to the disappearance of liming effect of aged-biochar on flooding water and decreased NH4+ concentrations in the soil. However, considerable variation of N2O emissions were observed in RWCS. Biochar showed a significant decreasing effect on the net global warming potential related to N2O and NH3 emissions (GWPN) in rice season (16.1-89.6%), and slight increased tendency in wheat season (1.43-13.1%) primarily due to its positive effects on N2O emission. Biochar amendment mainly BC22.5, significantly increased above-ground yields by 9.22% in rice season. Thus, it is a low carbon-producing and sustainable crop management method that can support crop production, C sequestration, and GHG mitigation in rice season under RWCS from the viewpoint of the Ngr mitigation. Our results suggest that emission patterns of N2O and NH3 varied with wet-dry alternation under the disturbance of long-term biochar amendment in RWCS; moreover, long-term biochar application exhibited significant potential for mitigating soil Ngr losses in rice season for RWCS.


Assuntos
Oryza , Agricultura/métodos , Carvão Vegetal , China , Aquecimento Global , Óxido Nitroso/análise , Estações do Ano , Solo , Triticum
16.
Natl Sci Rev ; 9(4): nwac037, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35419207

RESUMO

Cartilage injuries are often devastating and most cannot be cured because of the intrinsically low regenerative capacity of cartilage tissues. Although stem-cell therapy has shown enormous potential for cartilage repair, the therapeutic outcome has been restricted by low survival rates and poor chondrocyte differentiation in vivo. Here, we report an injectable hybrid inorganic (IHI) nanoscaffold that facilitates fast assembly, enhances survival and regulates chondrogenic differentiation of stem cells. IHI nanoscaffolds that strongly bind to extracellular matrix (ECM) proteins assemble stem cells through synergistic 3D cell-cell and cell-matrix interactions, creating a favorable physical microenvironment for stem-cell survival and differentiation in vitro and in vivo. Additionally, chondrogenic factors can be loaded into nanoscaffolds with a high capacity, which allows deep, homogenous drug delivery into assembled 3D stem-cell-derived tissues for effective control over the soluble microenvironment of stem cells. The developed IHI nanoscaffolds that assemble with stem cells are injectable. They also scavenge reactive oxygen species and timely biodegrade for proper integration into injured cartilage tissues. Implantation of stem-cell-assembled IHI nanoscaffolds into injured cartilage results in accelerated tissue regeneration and functional recovery. By establishing our IHI nanoscaffold-templated 3D stem-cell assembly method, we provide a promising approach to better overcoming the inhibitory microenvironment associated with cartilage injuries and to advance current stem-cell-based tissue engineering.

17.
ACS Omega ; 6(4): 3259-3266, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553944

RESUMO

Phosphorus (P) is an essential nutrient for crop production, and animal manures are rich in P. When using animal manures as alternatives to synthetic fertilizers, it is important to know the kinetics of P release from different animal manures and the forms, amounts, and dynamics of P in manure-treated soils. We chose four types of manure, viz., pig manure (PM), chicken manure (CM), dairy manure (DM), and commercial organic compost (OM), and evaluated the P release rate and availability in water solution and flooded/upland paddy soils. The WEP/total P (TP) and the water-extractable P (WEP) concentrations are highest for OM with the order: OM > PM > CM > DM. An increase in soil Olsen-P concentration was observed for the addition of manure with a varying application rate of P from low to moderate to high. The release capacity of Olsen-P in flooded conditions was higher than that in upland conditions. Under the flooded soil, PM and OM have faster release rates than CM and OM in the upland soil. Moreover, PM significantly increased available P by 29% in the flooded paddy soil while moderately inorganic P increased by 17% in the upland paddy soil. Olsen-P has a significant linear relationship with available P (Resin-P + NaHCO3-Pi; R 2 = 0.104; P < 0.01) and moderately inorganic P (NaOH-Pi + HCl-P; R 2 = 0.286; P < 0.01). The structural equation model showed that the organic input was beneficial to the conversion of moderately inorganic P to available P. Our results indicate that PM amendment promotes the release of available P in paddy soil.

18.
ACS Nano ; 15(2): 2468-2480, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33565857

RESUMO

Chronic bacterial-infected wound healing/skin regeneration remains a challenge due to drug resistance and the poor quality of wound repair. The ideal strategy is combating bacterial infection, while facilitating satisfactory wound healing. However, the reported strategy hardly achieves these two goals simultaneously without the help of antibiotics or bioactive molecules. In this work, a two-dimensional (2D) Ti3C2Tx MXene with excellent conductivity, biocompatibility, and antibacterial ability was applied in developing multifunctional scaffolds (HPEM) for methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. HPEM scaffolds were fabricated by the reaction between the poly(glycerol-ethylenimine), Ti3C2Tx MXene@polydopamine (MXene@PDA) nanosheets, and oxidized hyaluronic acid (HCHO). HPEM scaffolds presented multifunctional properties containing self-healing behavior, electrical conductivity, tissue-adhesive feature, antibacterial activity especially for MRSA resistant to many commonly used antibiotics (antibacterial efficiency was 99.03%), and rapid hemostatic capability. HPEM scaffolds enhanced the proliferation of normal skin cells with negligible toxicity. Additionally, HPEM scaffolds obviously accelerated the MRSA-infected wound healing (wound closure ratio was 96.31%) by efficient anti-inflammation effects, promoting cell proliferation, and the angiogenic process, stimulating granulation tissue formation, collagen deposition, vascular endothelial differentiation, and angiogenesis. This study indicates the important role of multifunctional 2D MXene@PDA nanosheets in infected wound healing. HPEM scaffolds with multifunctional properties provide a potential strategy for MRSA-infected wound healing/skin regeneration.


Assuntos
Hemostáticos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Bactérias , Condutividade Elétrica , Hemostáticos/farmacologia , Titânio , Cicatrização
19.
Colloids Surf B Biointerfaces ; 205: 111878, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34058693

RESUMO

CeO2 nanoenzyme possesses multiple enzyme-mimicking activities and excellent biocompatibility. However, its weak peroxidase (POD)-mimicking property in the tumor microenvironment (TME) hinders its further tumor therapy application. To enhance CeO2 nanoenzyme's POD activity and overcome limitations of single therapeutic modality, a novel antitumor controlled drug release system (CCCs NPs) was designed using Cu doped cerium oxide nanoparticles (Cu-CeO2 NPs) loaded with clinical anti-cancer drug doxorubicin (DOX) as the core and the breast cancer cell membrane as the outer shell. Cu doping endowed CeO2 NPs' with significantly enhanced POD-mimicking activity in the TME due to a remarkably higher Ce3+/Ce4+ ratio. The cancer cell membrane coating enabled our nanomedicine with homotypic targeting property. Combined with chemotherapeutic drug DOX, a selective and nearly complete tumor suppression was demonstrated in vitro and in vivo. Remarkably, under physiological condition, CCCs NPs worked as a radical scavenger to protect normal cells from oxidative stress caused by anti-cancer drug DOX and OH generated via Fenton-like reaction. Collectively, our CCCs NPs offered a therapeutic potential for effective breast cancer therapy while being free of side effects.


Assuntos
Cério , Nanopartículas , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Nanomedicina , Microambiente Tumoral
20.
Biomaterials ; 260: 120314, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853831

RESUMO

The recurrence of cutaneous cancer and multidrug-resistant (MDR) bacteria infected-wound healing after surgical excision remains a great challenge for both clinic and research. In this study, we developed an injectable redox and light responsive bio-inspired MnO2 hybrid (BMH) hydrogel for effective melanoma photothermo-chemotherapy and MDR bacteria infected-wound healing. The BMH hydrogel was ingeniously fabricated via non-covalent self-assembly and MnO2 nanosheets mediated covalent oxidative polymerization of the catechol functionalized chitosan for the first time. The BMH hydrogel displayed excellent shear-thinning, injectable, adhesive, redox/light responsive and contact-active antibacterial capabilities. Remarkably, our rationally designed BMH hydrogel could alleviate the hypoxic tumor microenvironment (TME) by decomposing the endogenous H2O2 into O2, and simultaneously release anticancer drug DOX. Increasing the local availability of O2 enhanced the cytotoxicity of DOX against melanoma in a highly site-specific manner. By further combining with a spatiotemporal controllable photothermal hyperthermia, we demonstrated a near-complete tumor suppression both in vitro (98.6%) and large solid tumors in vivo (96.2%). Moreover, BMH hydrogel could significantly promote the MDR-infected wound healing in vivo by efficiently eradicating bacterial invasion and perpetually ameliorating the oxidative and inflammatory wound microenvironment. Collectively, BMH hydrogel indicated great therapeutic potentials for both cancer therapy and tissue engineering.


Assuntos
Hipertermia Induzida , Melanoma , Bactérias , Humanos , Hidrogéis , Peróxido de Hidrogênio , Compostos de Manganês , Melanoma/tratamento farmacológico , Recidiva Local de Neoplasia , Oxirredução , Óxidos , Microambiente Tumoral , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA