Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(8): 950-958, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927477

RESUMO

Spatially resolved transcriptomics (SRT) provide gene expression close to, or even superior to, single-cell resolution while retaining the physical locations of sequencing and often also providing matched pathology images. However, SRT expression data suffer from high noise levels, due to the shallow coverage in each sequencing unit and the extra experimental steps required to preserve the locations of sequencing. Fortunately, such noise can be removed by leveraging information from the physical locations of sequencing, and the tissue organization reflected in corresponding pathology images. In this work, we developed Sprod, based on latent graph learning of matched location and imaging data, to impute accurate SRT gene expression. We validated Sprod comprehensively and demonstrated its advantages over previous methods for removing drop-outs in single-cell RNA-sequencing data. We showed that, after imputation by Sprod, differential expression analyses, pathway enrichment and cell-to-cell interaction inferences are more accurate. Overall, we envision de-noising by Sprod to become a key first step towards empowering SRT technologies for biomedical discoveries.


Assuntos
Algoritmos , Transcriptoma
2.
Mod Pathol ; 37(2): 100398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043788

RESUMO

Immunohistochemistry (IHC) is a well-established and commonly used staining method for clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated with a specific antibody and stained using diaminobenzidine (DAB), resulting in a brown coloration, whereas hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is quantified through the H-score, calculated from DAB staining intensity within the target cell region. Traditionally, this process requires evaluation by 2 expert pathologists, which is both time consuming and subjective. To enhance the efficiency and accuracy of this process, we have developed an automatic algorithm for quantifying the H-score of IHC images. To characterize protein expression in specific cell regions, a deep learning model for region recognition was trained based on hematoxylin staining only, achieving pixel accuracy for each class ranging from 0.92 to 0.99. Within the desired area, the algorithm categorizes DAB intensity of each pixel as negative, weak, moderate, or strong staining and calculates the final H-score based on the percentage of each intensity category. Overall, this algorithm takes an IHC image as input and directly outputs the H-score within a few seconds, significantly enhancing the speed of IHC image analysis. This automated tool provides H-score quantification with precision and consistency comparable to experienced pathologists but at a significantly reduced cost during IHC diagnostic workups. It holds significant potential to advance biomedical research reliant on IHC staining for protein expression quantification.


Assuntos
Aprendizado Profundo , Humanos , Imuno-Histoquímica , Hematoxilina/metabolismo , Algoritmos , Núcleo Celular/metabolismo
3.
Am J Pathol ; 193(4): 404-416, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669682

RESUMO

Whole slide imaging is becoming a routine procedure in clinical diagnosis. Advanced image analysis techniques have been developed to assist pathologists in disease diagnosis, staging, subtype classification, and risk stratification. Recently, deep learning algorithms have achieved state-of-the-art performances in various imaging analysis tasks, including tumor region segmentation, nuclei detection, and disease classification. However, widespread clinical use of these algorithms is hampered by their performances often degrading due to image quality issues commonly seen in real-world pathology imaging data such as low resolution, blurring regions, and staining variation. Restore-Generative Adversarial Network (GAN), a deep learning model, was developed to improve the imaging qualities by restoring blurred regions, enhancing low resolution, and normalizing staining colors. The results demonstrate that Restore-GAN can significantly improve image quality, which leads to improved model robustness and performance for existing deep learning algorithms in pathology image analysis. Restore-GAN has the potential to be used to facilitate the applications of deep learning models in digital pathology analyses.


Assuntos
Algoritmos , Patologistas , Humanos , Núcleo Celular , Processamento de Imagem Assistida por Computador , Coloração e Rotulagem
4.
Mod Pathol ; 36(8): 100196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100227

RESUMO

Microscopic examination of pathology slides is essential to disease diagnosis and biomedical research. However, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and produces massive data that capture tumor histologic details at high resolution. Furthermore, the rapid development of deep learning algorithms has significantly increased the efficiency and accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic targets. Nucleus segmentation and classification are critical to pathology image analysis, especially in characterizing and quantifying the tumor microenvironment (TME). Computational algorithms have been developed for nucleus segmentation and TME quantification within image patches. However, existing algorithms are computationally intensive and time consuming for WSI analysis. This study presents Histology-based Detection using Yolo (HD-Yolo), a new method that significantly accelerates nucleus segmentation and TME quantification. We demonstrate that HD-Yolo outperforms existing WSI analysis methods in nucleus detection, classification accuracy, and computation time. We validated the advantages of the system on 3 different tissue types: lung cancer, liver cancer, and breast cancer. For breast cancer, nucleus features by HD-Yolo were more prognostically significant than both the estrogen receptor status by immunohistochemistry and the progesterone receptor status by immunohistochemistry. The WSI analysis pipeline and a real-time nucleus segmentation viewer are available at https://github.com/impromptuRong/hd_wsi.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Microambiente Tumoral , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Mama/patologia
5.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32770205

RESUMO

Molecular profiling technologies, such as genome sequencing and proteomics, have transformed biomedical research, but most such technologies require tissue dissociation, which leads to loss of tissue morphology and spatial information. Recent developments in spatial molecular profiling technologies have enabled the comprehensive molecular characterization of cells while keeping their spatial and morphological contexts intact. Molecular profiling data generate deep characterizations of the genetic, transcriptional and proteomic events of cells, while tissue images capture the spatial locations, organizations and interactions of the cells together with their morphology features. These data, together with cell and tissue imaging data, provide unprecedented opportunities to study tissue heterogeneity and cell spatial organization. This review aims to provide an overview of these recent developments in spatial molecular profiling technologies and the corresponding computational methods developed for analyzing such data.


Assuntos
Bases de Dados Factuais , Perfilação da Expressão Gênica , Genômica , Software
6.
Am J Pathol ; 192(6): 917-925, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390316

RESUMO

Rhabdomyosarcoma (RMS), the most common malignant soft tissue tumor in children, has several histologic subtypes that influence treatment and predict patient outcomes. Assistance with histologic classification for pathologists as well as discovery of optimized predictive biomarkers is needed. A convolutional neural network for RMS histology subtype classification was developed using digitized pathology images from 80 patients collected at time of diagnosis. A subsequent embryonal rhabdomyosarcoma (eRMS) prognostic model was also developed in a cohort of 60 eRMS patients. The RMS classification model reached a performance of an area under the receiver operating curve of 0.94 for alveolar rhabdomyosarcoma and an area under the receiver operating curve of 0.92 for eRMS at slide level in the test data set (n = 192). The eRMS prognosis model separated the patients into predicted high- and low-risk groups with significantly different event-free survival outcome (likelihood ratio test; P = 0.02) in the test data set (n = 136). The predicted risk group is significantly associated with patient event-free survival outcome after adjusting for patient age and sex (predicted high- versus low-risk group hazard ratio, 4.64; 95% CI, 1.05-20.57; P = 0.04). This is the first comprehensive study to develop computational algorithms for subtype classification and prognosis prediction for RMS histopathology images. Such models can aid pathology evaluation and provide additional parameters for risk stratification.


Assuntos
Aprendizado Profundo , Rabdomiossarcoma Embrionário , Rabdomiossarcoma , Criança , Intervalo Livre de Doença , Humanos , Prognóstico , Rabdomiossarcoma/diagnóstico por imagem , Rabdomiossarcoma/patologia , Rabdomiossarcoma Embrionário/patologia
7.
Semin Diagn Pathol ; 40(2): 109-119, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36890029

RESUMO

Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Inteligência Artificial , Medicina de Precisão/métodos , Neoplasias/terapia , Neoplasias/patologia
8.
Gastroenterology ; 158(6): 1698-1712.e14, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972235

RESUMO

BACKGROUND & AIMS: Thirty to 90% of hepatocytes contain whole-genome duplications, but little is known about the fates or functions of these polyploid cells or how they affect development of liver disease. We investigated the effects of continuous proliferative pressure, observed in chronically damaged liver tissues, on polyploid cells. METHODS: We studied Rosa-rtTa mice (controls) and Rosa-rtTa;TRE-short hairpin RNA mice, which have reversible knockdown of anillin, actin binding protein (ANLN). Transient administration of doxycycline increases the frequency and degree of hepatocyte polyploidy without permanently altering levels of ANLN. Mice were then given diethylnitrosamine and carbon tetrachloride (CCl4) to induce mutations, chronic liver damage, and carcinogenesis. We performed partial hepatectomies to test liver regeneration and then RNA-sequencing to identify changes in gene expression. Lineage tracing was used to rule out repopulation from non-hepatocyte sources. We imaged dividing hepatocytes to estimate the frequency of mitotic errors during regeneration. We also performed whole-exome sequencing of 54 liver nodules from patients with cirrhosis to quantify aneuploidy, a possible outcome of polyploid cell divisions. RESULTS: Liver tissues from control mice given CCl4 had significant increases in ploidy compared with livers from uninjured mice. Mice with knockdown of ANLN had hepatocyte ploidy above physiologic levels and developed significantly fewer liver tumors after administration of diethylnitrosamine and CCl4 compared with control mice. Increased hepatocyte polyploidy was not associated with altered regenerative capacity or tissue fitness, changes in gene expression, or more mitotic errors. Based on lineage-tracing experiments, non-hepatocytes did not contribute to liver regeneration in mice with increased polyploidy. Despite an equivalent rate of mitosis in hepatocytes of differing ploidies, we found no lagging chromosomes or micronuclei in mitotic polyploid cells. In nodules of human cirrhotic liver tissue, there was no evidence of chromosome-level copy number variations. CONCLUSIONS: Mice with increased polyploid hepatocytes develop fewer liver tumors following chronic liver damage. Remarkably, polyploid hepatocytes maintain the ability to regenerate liver tissues during chronic damage without generating mitotic errors, and aneuploidy is not commonly observed in cirrhotic livers. Strategies to increase numbers of polypoid hepatocytes might be effective in preventing liver cancer.


Assuntos
Carcinoma Hepatocelular/genética , Hepatócitos/fisiologia , Neoplasias Hepáticas/genética , Regeneração Hepática/genética , Poliploidia , Animais , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dietilnitrosamina/toxicidade , Feminino , Técnicas de Silenciamento de Genes , Hepatectomia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Regeneração Hepática/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Cultura Primária de Células , Fatores de Proteção , RNA-Seq , Sequenciamento do Exoma
9.
Glycoconj J ; 38(1): 119-127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411077

RESUMO

Abnormal glycosylation is a common characteristic of cancer cells and there is a lot of evidence that glycans can regulate the biological behavior of tumor cells. Sialylation modification, a form of glycosylation modification, plays an important role in cell recognition, cell adhesion and cell signal transduction. Abnormal sialylation on the surface of tumor cells is related to tumor migration and invasion, with abnormal expression of sialyltransferases being one of the main causes of abnormal sialylation. Recent studies provide a better understanding of the importance of the sialyltransferases, and how they influences cancer cell angiogenesis, adhesion and Epithelial-Mesenchymal Transition (EMT). The present review will provide a direction for future studies in determining the roles of sialyltransferases in cancer metastasis, and abnormal sialyltransferases are likely to be potential biomarkers for cancer.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/enzimologia , Sialiltransferases/metabolismo , Adesão Celular , Humanos , Integrinas/metabolismo , Neoplasias/enzimologia , Selectinas/metabolismo
10.
Am J Pathol ; 189(9): 1686-1698, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199919

RESUMO

With the rapid development of image scanning techniques and visualization software, whole slide imaging (WSI) is becoming a routine diagnostic method. Accelerating clinical diagnosis from pathology images and automating image analysis efficiently and accurately remain significant challenges. Recently, deep learning algorithms have shown great promise in pathology image analysis, such as in tumor region identification, metastasis detection, and patient prognosis. Many machine learning algorithms, including convolutional neural networks, have been proposed to automatically segment pathology images. Among these algorithms, segmentation deep learning algorithms such as fully convolutional networks stand out for their accuracy, computational efficiency, and generalizability. Thus, deep learning-based pathology image segmentation has become an important tool in WSI analysis. In this review, the pathology image segmentation process using deep learning algorithms is described in detail. The goals are to provide quick guidance for implementing deep learning into pathology image analysis and to provide some potential ways of further improving segmentation performance. Although there have been previous reviews on using machine learning methods in digital pathology image analysis, this is the first in-depth review of the applications of deep learning algorithms for segmentation in WSI analysis.


Assuntos
Algoritmos , Aprendizado Profundo , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Patologia Clínica , Humanos
11.
Cancer ; 125(23): 4252-4259, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503336

RESUMO

BACKGROUND: With the expansion of non-small cell lung cancer (NSCLC) screening methods, the percentage of cases with early-stage NSCLC is anticipated to increase. Yet it remains unclear how the type and case volume of the health care facility at which treatment occurs may affect surgery selection and overall survival for cases with early-stage NSCLC. METHODS: A total of 332,175 cases with the American Joint Committee on Cancer (AJCC) TNM stage I and stage II NSCLC who were reported to the National Cancer Data Base (NCDB) by 1302 facilities were studied. Facility type was characterized in the NCDB as community cancer program (CCP), comprehensive community cancer program (CCCP), academic/research program (ARP), or integrated network cancer program (INCP). Each facility type was dichotomized further into high-volume or low-volume groups based on the case volume. Multivariate Cox proportional hazard models, the logistic regression model, and propensity score matching were used to evaluate differences in survival and surgery selection among facilities according to type and volume. RESULTS: Cases from ARPs were found to have the longest survival (median, 16.4 months) and highest surgery rate (74.8%), whereas those from CCPs had the shortest survival (median, 9.7 months) and the lowest surgery rate (60.8%). The difference persisted when adjusted by potential confounders. For cases treated at CCPs, CCCPs, and ARPs, high-volume facilities had better survival outcomes than low-volume facilities. In facilities with better survival outcomes, surgery was performed for a greater percentage of cases compared with facilities with worse outcomes. CONCLUSIONS: For cases with early-stage NSCLC, both facility type and case volume influence surgery selection and clinical outcome. Higher surgery rates are observed in facilities with better survival outcomes.


Assuntos
Instituições de Assistência Ambulatorial/normas , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Atenção à Saúde , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Estadiamento de Neoplasias , Análise de Sobrevida
12.
BMC Bioinformatics ; 19(1): 64, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29482496

RESUMO

BACKGROUND: Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. RESULTS: In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. CONCLUSIONS: This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.


Assuntos
Processamento de Imagem Assistida por Computador , Microvasos/patologia , Redes Neurais de Computação , Algoritmos , Humanos , Neoplasias/patologia , Análise de Sobrevida , Fatores de Tempo
13.
Biomed Opt Express ; 15(3): 1437-1452, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495700

RESUMO

This study presents denoiseGAN, a novel semi-supervised generative adversarial network, for denoising adaptive optics (AO) retinal images. By leveraging both synthetic and real-world data, denoiseGAN effectively addresses various noise sources, including blur, motion artifacts, and electronic noise, commonly found in AO retinal imaging. Experimental results demonstrate that denoiseGAN outperforms traditional image denoising methods and the state-of-the-art conditional GAN model, preserving retinal cell structures and enhancing image contrast. Moreover, denoiseGAN aids downstream analysis, improving cell segmentation accuracy. Its 30% faster computational efficiency makes it a potential choice for real-time AO image processing in ophthalmology research and clinical practice.

14.
PLoS One ; 19(3): e0300208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437230

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0297073.].

15.
PLoS One ; 19(2): e0297073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324549

RESUMO

In the context of extensive disciplinary integration, researchers worldwide have increasingly focused on musical ability. However, despite the wide range of available music ability tests, there remains a dearth of validated tests applicable to China. The Music Ear Test (MET) is a validated scale that has been reported to be potentially suitable for cross-cultural distribution in a Chinese sample. However, no formal translation and cross-cultural reliability/validity tests have been conducted for the Chinese population in any of the studies using the Music Ear Test. This study aims to assess the factor structure, convergence, predictiveness, and validity of the Chinese version of the MET, based on a large sample of Chinese participants (n≥1235). Furthermore, we seek to determine whether variables such as music training level, response pattern, and demographic data such as gender and age have intervening effects on the results. In doing so, we aim to provide clear indications of musical aptitude and expertise by validating an existing instrument, the Music Ear Test, and provide a valid method for further understanding the musical abilities of the Chinese sample.


Assuntos
Música , Humanos , Reprodutibilidade dos Testes , Aptidão/fisiologia , Escolaridade , China
16.
Genome Biol ; 25(1): 147, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844966

RESUMO

Current clustering analysis of spatial transcriptomics data primarily relies on molecular information and fails to fully exploit the morphological features present in histology images, leading to compromised accuracy and interpretability. To overcome these limitations, we have developed a multi-stage statistical method called iIMPACT. It identifies and defines histology-based spatial domains based on AI-reconstructed histology images and spatial context of gene expression measurements, and detects domain-specific differentially expressed genes. Through multiple case studies, we demonstrate iIMPACT outperforms existing methods in accuracy and interpretability and provides insights into the cellular spatial organization and landscape of functional genes within spatial transcriptomics data.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Humanos , Análise por Conglomerados , Processamento de Imagem Assistida por Computador/métodos
17.
NPJ Digit Med ; 7(1): 106, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693429

RESUMO

Existing natural language processing (NLP) methods to convert free-text clinical notes into structured data often require problem-specific annotations and model training. This study aims to evaluate ChatGPT's capacity to extract information from free-text medical notes efficiently and comprehensively. We developed a large language model (LLM)-based workflow, utilizing systems engineering methodology and spiral "prompt engineering" process, leveraging OpenAI's API for batch querying ChatGPT. We evaluated the effectiveness of this method using a dataset of more than 1000 lung cancer pathology reports and a dataset of 191 pediatric osteosarcoma pathology reports, comparing the ChatGPT-3.5 (gpt-3.5-turbo-16k) outputs with expert-curated structured data. ChatGPT-3.5 demonstrated the ability to extract pathological classifications with an overall accuracy of 89%, in lung cancer dataset, outperforming the performance of two traditional NLP methods. The performance is influenced by the design of the instructive prompt. Our case analysis shows that most misclassifications were due to the lack of highly specialized pathology terminology, and erroneous interpretation of TNM staging rules. Reproducibility shows the relatively stable performance of ChatGPT-3.5 over time. In pediatric osteosarcoma dataset, ChatGPT-3.5 accurately classified both grades and margin status with accuracy of 98.6% and 100% respectively. Our study shows the feasibility of using ChatGPT to process large volumes of clinical notes for structured information extraction without requiring extensive task-specific human annotation and model training. The results underscore the potential role of LLMs in transforming unstructured healthcare data into structured formats, thereby supporting research and aiding clinical decision-making.

18.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187541

RESUMO

In spot-based spatial transcriptomics, spots that are of the same size and printed at the fixed location cannot precisely capture the actual randomly located single cells, therefore failing to profile the transcriptome at the single-cell level. The current studies primarily focused on enhancing the spot resolution in size via computational imputation or technical improvement, however, they largely overlooked that single-cell resolution, i.e., resolution in cellular or even smaller size, does not equal single-cell level. Using both real and simulated spatial transcriptomics data, we demonstrated that even the high-resolution spatial transcriptomics still has a large number of spots partially covering multiple cells simultaneously, revealing the intrinsic non-single-cell level of spot-based spatial transcriptomics regardless of spot size. To this end, we present STIE, an EM algorithm that aligns the spatial transcriptome to its matched histology image-based nuclear morphology and recovers missing cells from up to ~70% gap area between spots via the nuclear morphological similarity and neighborhood information, thereby achieving the real single-cell level and whole-slide scale deconvolution/convolution and clustering for both low- and high-resolution spots. On both real and simulation spatial transcriptomics data, STIE characterizes the cell-type specific gene expression variation and demonstrates the outperforming concordance with the single-cell RNAseq-derived cell type transcriptomic signatures compared to the other spot- and subspot-level methods. Furthermore, STIE enabled us to gain novel insights that failed to be revealed by the existing methods due to the lack of single-cell level, for instance, lower actual spot resolution than its reported spot size, the additional contribution of cellular morphology to cell typing beyond transcriptome, unbiased evaluation of cell type colocalization, superior power of high-resolution spot in distinguishing nuanced cell types, and spatially resolved cell-cell interactions at the single-cell level other than spot level. The STIE code is publicly available as an R package at https://github.com/zhushijia/STIE.

19.
Comput Methods Programs Biomed ; 241: 107768, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619429

RESUMO

BACKGROUND AND OBJECTIVE: Unsupervised domain adaptation (UDA) is a powerful approach in tackling domain discrepancies and reducing the burden of laborious and error-prone pixel-level annotations for instance segmentation. However, the domain adaptation strategies utilized in previous instance segmentation models pool all the labeled/detected instances together to train the instance-level GAN discriminator, which neglects the differences among multiple instance categories. Such pooling prevents UDA instance segmentation models from learning categorical correspondence between source and target domains for accurate instance classification; METHODS: To tackle this challenge, we propose an Instance Segmentation CycleGAN (ISC-GAN) algorithm for UDA multiclass-instance segmentation. We conduct extensive experiments on the multiclass nuclei recognition task to transfer knowledge from hematoxylin and eosin to immunohistochemistry stained pathology images. Specifically, we fuse CycleGAN with Mask R-CNN to learn categorical correspondence with image-level domain adaptation and virtual supervision. Moreover, we utilize Curriculum Learning to separate the learning process into two steps: (1) learning segmentation only on labeled source data, and (2) learning target domain segmentation with paired virtual labels generated by ISC-GAN. The performance was further improved through experiments with other strategies, including Shared Weights, Knowledge Distillation, and Expanded Source Data. RESULTS: Comparing to the baseline model or the three UDA instance detection and segmentation models, ISC-GAN illustrates the state-of-the-art performance, with 39.1% average precision and 48.7% average recall. The source codes of ISC-GAN are available at https://github.com/sdw95927/InstanceSegmentation-CycleGAN. CONCLUSION: ISC-GAN adapted knowledge from hematoxylin and eosin to immunohistochemistry stained pathology images, suggesting the potential for reducing the need for large annotated pathological image datasets in deep learning and computer vision tasks.


Assuntos
Algoritmos , Currículo , Amarelo de Eosina-(YS) , Hematoxilina , Imuno-Histoquímica
20.
Heliyon ; 9(10): e20684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842633

RESUMO

Depression has become a widespread health concern today. Understanding the influencing factors can promote human mental health as well as provide a basis for exploring preventive measures. Combining LassoNet with recurrent neural network (RNN), this study constructed a screening model ,LassoNet-RNN, for identifying influencing factors of individual depression. Based on multi-wave surveys of China Health and Retirement Longitudinal Study (CHARLS) dataset (11,661 observations), we analyzed the multivariate time series data and recognized 27 characteristic variables selected from four perspectives: demographics, health-related risk factors, household economic status, and living environment. Additionally, the importance rankings of the characteristic variables were obtained. These results offered insightful recommendations for theoretical developments and practical decision making in public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA