Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 193(1): 84-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464512

RESUMO

Molecular-level analyses of breast carcinogenesis benefit from vivo disease models. Estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) overexpression targeted to mammary epithelial cells in genetically engineered mouse models induces largely similar rates of proliferative mammary disease in prereproductive senescent mice. Herein, with natural reproductive senescence, Esr1 overexpression compared with CYP19A1 overexpression resulted in significantly higher rates of preneoplasia and cancer. Before reproductive senescence, Esr1, but not CYP19A1, overexpressing mice are tamoxifen resistant. However, during reproductive senescence, Esr1 mice exhibited responsiveness. Both Esr1 and CYP19A1 are responsive to letrozole before and after reproductive senescence. Gene Set Enrichment Analyses of RNA-sequencing data sets showed that higher disease rates in Esr1 mice were accompanied by significantly higher expression of cell proliferation genes, including members of prognostic platforms for women with early-stage hormone receptor-positive disease. Tamoxifen and letrozole exposure induced down-regulation of these genes and resolved differences between the two models. Both Esr1 and CYP19A1 overexpression induced abnormal developmental patterns of pregnancy-like gene expression. This resolved with progression through reproductive senescence in CYP19A1 mice, but was more persistent in Esr1 mice, resolving only with tamoxifen and letrozole exposure. In summary, genetically engineered mouse models of Esr1 and CYP19A1 overexpression revealed a diversion of disease processes resulting from the two distinct molecular pathophysiological mammary gland-targeted intrusions into estrogen signaling during reproductive senescence.


Assuntos
Aromatase , Células Epiteliais , Receptor alfa de Estrogênio , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Gravidez , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Letrozol , Tamoxifeno/farmacologia , Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Aromatase/genética , Aromatase/metabolismo
2.
Am J Pathol ; 193(1): 103-120, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464513

RESUMO

Age is a risk factor for human estrogen receptor-positive breast cancer, with highest prevalence following menopause. While transcriptome risk profiling is available for human breast cancers, it is not yet developed for prognostication for primary or secondary breast cancer development utilizing at-risk breast tissue. Both estrogen receptor α (ER) and aromatase overexpression have been linked to human breast cancer. Herein, conditional genetically engineered mouse models of estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) were used to show that induction of Esr1 overexpression just before or with reproductive senescence and maintained through age 30 months resulted in significantly higher prevalence of estrogen receptor-positive adenocarcinomas than CYP19A1 overexpression. All adenocarcinomas tested showed high percentages of ER+ cells. Mammary cancer development was preceded by a persistent proliferative transcriptome risk signature initiated within 1 week of transgene induction that showed parallels to the Prosigna/Prediction Analysis of Microarray 50 human prognostic signature for early-stage human ER+ breast cancer. CYP19A1 mice also developed ER+ mammary cancers, but histology was more divided between adenocarcinoma and adenosquamous, with one ER- adenocarcinoma. Results demonstrate that, like humans, generation of ER+ adenocarcinoma in mice was facilitated by aging mice past the age of reproductive senescence. Esr1 overexpression was associated with a proliferative estrogen pathway-linked signature that preceded appearance of ER+ mammary adenocarcinomas.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Expressão Gênica , Aromatase/genética , Aromatase/metabolismo , Reprodução/genética , Reprodução/fisiologia
3.
Arch Microbiol ; 206(4): 139, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436732

RESUMO

Salmonella exhibits a strong inducible acid tolerance response (ATR) under weak acid conditions, and can also induce high-risk strains that are highly toxic, acid resistant, and osmotic pressure resistant to aquatic products. However, the induction mechanism is not yet clear. Therefore, this study aims to simulate the slightly acidic, low-temperature, and high-protein environment during squid processing and storage. Through λRed gene knockout, exploring the effects of low-acid induction, long-term low-temperature storage, and two-component regulation on Salmonella ATR. In this study, we found the two-component system, PhoP/PhoQ and PmrA/PmrB in Salmonella regulates the amino acid metabolism system and improves bacterial acid tolerance by controlling arginine and lysine. Compared with the two indicators of total biogenic amine and diamine content, biogenic amine index and quality index were more suitable for evaluating the quality of aquatic products. The result showed that low-temperature treatment could inhibit Salmonella-induced ATR, which further explained the ATR mechanism from the amino acid metabolism.


Assuntos
Arginina , Diaminas , Animais , Decapodiformes , Salmonella/genética , Aminas Biogênicas
4.
J Sci Food Agric ; 104(4): 1874-1883, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37885307

RESUMO

Carbohydrate is one kind of the most important additives in the production of surimi and surimi products, mainly due to its wide range of sources and superior functionality. In recent years, new carbohydrates (oligosaccharides and polysaccharides) have been gradually applied in the production of surimi and surimi products which is mainly driven by consumer requirement on nutritional and the flavors or taste quality and producer requirement on extending the shelf life, like low calorie intake, dietary fiber enrichment, rich taste and improvement of antioxidant properties. Besides anti-freezing and improvement in gelling ability, novel functionalities have been explored such as fat substitution, improving flavor, antibacterial effect, antioxidant effect and improving three-dimensional printability. With an in-depth study of the mechanism of carbohydrate improving the qualities of surimi and surimi products, the application of carbohydrates in surimi would be more effective. Therefore, this review summarizes the new carbohydrates applied in the processing of surimi and surimi products, and their novel functionalities. Additionally, progress of the research on the mechanism of carbohydrate improving the qualities of surimi is also reviewed. © 2023 Society of Chemical Industry.


Assuntos
Antibacterianos , Antioxidantes , Géis/química , Carboidratos , Produtos Pesqueiros/análise
5.
J Sci Food Agric ; 104(1): 14-20, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37551539

RESUMO

Carbohydrate is widely used in the production of surimi and surimi products to improve their qualities, such as anti-freezing capability, gelling ability, nutrition, flavor and 3D printability. More and more native carbohydrates have been modified through physical methods (e.g., ball milling, irradiation and differential sedimentation), chemical method (e.g., deacetylation, hydroxypropylation and acetic acid esterification) or enzymatic method (e.g., chitosanase) before being used in the processing of surimi and surimi products in recent years. At the same time, different carbohydrates are compounded and applied to surimi and surimi products. The modified and compounded carbohydrates in surimi have been proved to improve quality of surimi and surimi products more pronouncedly than native carbohydrates. Therefore, this review summarizes the manipulation of carbohydrate by modification and compounding to improve the qualities of surimi and surimi products. Moreover, the prospects for carbohydrate modification and compounding for use in surimi and surimi products are discussed. © 2023 Society of Chemical Industry.


Assuntos
Carboidratos , Produtos Pesqueiros , Géis , Produtos Pesqueiros/análise
6.
Eur J Neurosci ; 57(7): 1053-1067, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788059

RESUMO

In the face of imminent predatory danger, animals quickly detect the threat and mobilize key survival defensive actions, such as escape and freezing. The dorsomedial portion of the ventromedial hypothalamus (VMH) is a central node in innate and conditioned predator-induced defensive behaviours. Prior studies have shown that activity of steroidogenic factor 1 (sf1)-expressing VMH cells is necessary for such defensive behaviours. However, sf1-VMH neural activity during exposure to predatory threats has not been well characterized. Here, we use single-cell recordings of calcium transients from VMH cells in male and female mice. We show this region is activated by threat proximity and that it encodes future occurrence of escape but not freezing. Our data also show that VMH cells encoded proximity of an innate predatory threat but not a fear-conditioned shock grid. Furthermore, chemogenetic activation of the VMH increases avoidance of innate threats, such as open spaces and a live predator. This manipulation also increased freezing towards the predator, without altering defensive behaviours induced by a shock grid. Lastly, we show that optogenetic VMH activation recruited a broad swath of regions, suggestive of widespread changes in neural defensive state. Taken together, these data reveal the neural dynamics of the VMH during predator exposure and further highlight its role as a critical component of the hypothalamic predator defense system.


Assuntos
Medo , Hipotálamo , Masculino , Feminino , Camundongos , Animais , Hipotálamo/fisiologia , Medo/fisiologia , Núcleo Hipotalâmico Ventromedial
7.
Small ; 19(43): e2302758, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381095

RESUMO

Innate immunity triggered by the cGAS/STING pathway has the potential to improve cancer immunotherapy. Previously, the authors reported that double-stranded DNA (dsDNA) released by dying tumor cells can trigger the cGAS/STING pathway. However, owing to efferocytosis, dying tumor cells are engulfed and cleared before the damaged dsDNA is released; hence, immunologic tolerance and immune escape occur. Herein, a cancer-cell-membrane biomimetic nanocomposites that exhibit tumor-immunotherapeutic effects are synthesized by augmenting the cGAS/STING pathway and suppressing efferocytosis. Once internalized by cancer cells, a combined chemo/chemodynamic therapy would be triggered, which damages their nuclear and mitochondrial DNA. Furthermore, the releasing Annexin A5 protein could inhibit efferocytosis effect and promote immunostimulatory secondary necrosis by preventing phosphatidylserine exposure, resulting in the burst release of dsDNA. These dsDNA fragments, as molecular patterns to immunogenic damage, escape from the cancer cells, activate the cGAS/STING pathway, enhance cross-presentation inside dendritic cells, and promote M1-polarization of tumor-associated macrophages. In vivo experiments suggest that the proposed nanocomposite could recruit cytotoxic T-cells and facilitate long-term immunological memory. Moreover, when combined with immune-checkpoint blockades, it could augment the immune response. Therefore, this novel biomimetic nanocomposite is a promising strategy for generating adaptive antitumor immune responses.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteínas de Membrana/metabolismo , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Neoplasias/terapia , DNA , Membrana Celular/metabolismo , Imunoterapia/métodos
8.
Am J Pathol ; 192(10): 1407-1417, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115719

RESUMO

Mammographic density is associated with increased breast cancer risk. Conventional visual assessment of murine mouse models does not include quantified total density analysis. A bifurcated method was sufficient to obtain relative density scores on a broad range of two-dimensional whole mount images that contained both normal and abnormal findings. Image processing techniques, including a ridge operator and a gaussian denoising method, were used to isolate background away from mammary epithelium and use mean pixel intensity to represent mammary density on genetically engineered mouse models for breast cancer in mice 4 to 29 months of age. The bifurcated method allowed for application of an optimal image processing approach for the structural elements present in the whole mount images. Gaussian denoising was the optimal approach when more dense lobular growth and tertiary branching dominate and a ridge operator when epithelial growth was more sparse and secondary branching was the more dominant structural feature. The two processing approaches were combined in a single experimental flow program using an initial image density measurement as the decision point between the two approaches. Higher density was associated with lobular growth, tertiary branching, fibrotic stroma, and presence of cancer. The significance of the study is development of a readily accessible program for digital assessment of mammary gland whole mount density across a range of mammary gland morphologies.


Assuntos
Processamento de Imagem Assistida por Computador , Glândulas Mamárias Animais , Animais , Modelos Animais de Doenças , Epitélio , Processamento de Imagem Assistida por Computador/métodos , Glândulas Mamárias Animais/diagnóstico por imagem , Camundongos
9.
J Neurosci ; 41(10): 2301-2312, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33514675

RESUMO

Why layers II/III of entorhinal cortex (EC) deteriorate in advance of other regions during the earliest stages of Alzheimer's disease is poorly understood. Failure of retrograde trophic support from synapses to cell bodies is a common cause of neuronal atrophy, and we accordingly tested for early-life deterioration in projections of rodent layer II EC neurons. Using electrophysiology and quantitative imaging, changes in EC terminals during young adulthood were evaluated in male rats and mice. Field excitatory postsynaptic potentials, input/output curves, and frequency following capacity by lateral perforant path (LPP) projections from lateral EC to dentate gyrus were unchanged from 3 to 8-10 months of age. In contrast, the unusual presynaptic form of long-term potentiation (LTP) expressed by the LPP was profoundly impaired by 8 months in rats and mice. This impairment was accompanied by a reduction in the spine to terminal endocannabinoid signaling needed for LPP-LTP induction and was offset by an agent that enhances signaling. There was a pronounced age-related increase in synaptophysin within LPP terminals, an effect suggestive of incipient pathology. Relatedly, presynaptic levels of TrkB-receptors mediating retrograde trophic signaling-were reduced in the LPP terminal field. LTP and TrkB content were also reduced in the medial perforant path of 8- to 10-month-old rats. As predicted, performance on an LPP-dependent episodic memory task declined by late adulthood. We propose that memory-related synaptic plasticity in EC projections is unusually sensitive to aging, which predisposes EC neurons to pathogenesis later in life.SIGNIFICANCE STATEMENT Neurons within human superficial entorhinal cortex are particularly vulnerable to effects of aging and Alzheimer's disease, although why this is the case is not understood. Here we report that perforant path projections from layer II entorhinal cortex to the dentate gyrus exhibit rapid aging in rodents, including reduced synaptic plasticity and abnormal protein content by 8-10 months of age. Moreover, there was a substantial decline in the performance of an episodic memory task that depends on entorhinal cortical projections at the same ages. Overall, the results suggest that the loss of plasticity and related trophic signaling predispose the entorhinal neurons to functional decline in relatively young adulthood.


Assuntos
Envelhecimento/patologia , Giro Denteado/fisiopatologia , Potenciação de Longa Duração/fisiologia , Via Perfurante/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans
10.
J Neurosci ; 41(25): 5399-5420, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33883203

RESUMO

The brainstem dorsal periaqueductal gray (dPAG) has been widely recognized as being a vital node orchestrating the responses to innate threats. Intriguingly, recent evidence also shows that the dPAG mediates defensive responses to fear conditioned contexts. However, it is unknown whether the dPAG displays independent or shared patterns of activation during exposure to innate and conditioned threats. It is also unclear how dPAG ensembles encode and predict diverse defensive behaviors. To address this question, we used miniaturized microscopes to obtain recordings of the same dPAG ensembles during exposure to a live predator and a fear conditioned context in male mice. dPAG ensembles encoded not only distance to threat, but also relevant features, such as predator speed and angular offset between mouse and threat. Furthermore, dPAG cells accurately encoded numerous defensive behaviors, including freezing, stretch-attend postures, and escape. Encoding of behaviors and of distance to threat occurred independently in dPAG cells. dPAG cells also displayed a shared representation to encode these behaviors and distance to threat across innate and conditioned threats. Last, we also show that escape could be predicted by dPAG activity several seconds in advance. Thus, dPAG activity dynamically tracks key kinematic and behavioral variables during exposure to threats, and exhibits similar patterns of activation during defensive behaviors elicited by innate or conditioned threats. These data indicate that a common pathway may be recruited by the dPAG during exposure to a wide variety of threat modalities.SIGNIFICANCE STATEMENT The dorsal periaqueductal gray (dPAG) is critical to generate defensive behaviors during encounters with threats of multiple modalities. Here we use longitudinal calcium transient recordings of dPAG ensembles in freely moving mice to show that this region uses shared patterns of activity to represent distance to an innate threat (a live predator) and a conditioned threat (a shock grid). We also show that dPAG neural activity can predict diverse defensive behaviors. These data indicate the dPAG uses conserved population-level activity patterns to encode and coordinate defensive behaviors during exposure to both innate and conditioned threats.


Assuntos
Comportamento Animal/fisiologia , Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Mol Psychiatry ; 26(4): 1162-1177, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31576007

RESUMO

Compelling evidence suggests that synaptic structural plasticity, driven by remodeling of the actin cytoskeleton, underlies addictive drugs-induced long-lasting behavioral plasticity. However, the signaling mechanisms leading to actin cytoskeleton remodeling remain poorly defined. DNA methylation is a critical mechanism used to control activity-dependent gene expression essential for long-lasting synaptic plasticity. Here, we provide evidence that DNA methyltransferase DNMT3a is degraded by the E2 ubiquitin-conjugating enzyme Ube2b-mediated ubiquitination in dorsal hippocampus (DH) of rats that repeatedly self-administrated heroin. DNMT3a degradation leads to demethylation in CaMKK1 gene promotor, thereby facilitating CaMKK1 expression and consequent activation of its downstream target CaMKIα, an essential regulator of spinogenesis. CaMKK1/CaMKIα signaling regulates actin cytoskeleton remodeling in the DH and behavioral plasticity by activation of Rac1 via acting Rac guanine-nucleotide-exchange factor ßPIX. These data suggest that Ube2b-dependent degradation of DNMT3a relieves a transcriptional brake on CaMKK1 gene and thus activates CaMKK1/CaMKIα/ßPIX/Rac1 cascade, leading to drug use-induced actin polymerization and behavior plasticity.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Alcaloides Opiáceos , Enzimas de Conjugação de Ubiquitina , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , DNA Metiltransferase 3A , Fatores de Troca do Nucleotídeo Guanina , Hipocampo , Plasticidade Neuronal/genética , Ratos , Transdução de Sinais
12.
Fish Shellfish Immunol ; 131: 637-645, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272521

RESUMO

Bacteria or viral outbreaks can cause tilapia hemorrhage, ensuring considerable volume of hemoglobin (Hb) into the tissue. However, the hemoglobin toxicity on tissue and high doses also effect on tissue this phenomena is still under consideration. Therefore, current study exploited Nile tilapia kidney (NTK) cells to deeply expose the toxic effect of Hb on NTK cells. Toxicity of Hb on NTK cells was determined in terms of cells growth, expression of iron metabolism and inflammation-related genes, consequently examined antioxidant-related enzymes genes expression, intracellular iron and reactive oxygen species (ROS) contents, and apoptosis-related genes expression. The results showed that Hb and heme significantly inhibited NTK cells growth and up-regulated iron metabolism-related genes expression in different degrees. The Hb and heme activated the expression of pro-inflammatory cytokines (TNF-α, tumor necrosis factor-α; IL-1ß, interleukin 1ß; IL-6, interleukin 6), the anti-inflammatory factor (IL-10, interleukin 10) and the chemotactic factors (IL-4, interleukin 4; IL-8, interleukin 8) through NF-κB pathway, meanwhile activated the expression of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). Moreover, the Hb significantly increased intracellular iron and ROS contents while the expression of apoptosis-related genes was significantly activated by both Hb and heme. Current investigation suggested that high oxidative activity of Hb could activate iron metabolism- and inflammation-related genes expression, and increase intracellular iron and ROS levels, lead to up-regulated the expression of apoptosis genes in NTK cells.


Assuntos
Ciclídeos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Rim/metabolismo , Linhagem Celular , Hemoglobinas/metabolismo , Inflamação/genética , Inflamação/veterinária , Inflamação/metabolismo , Ferro/metabolismo , Heme/metabolismo , Heme/farmacologia , Estresse Oxidativo , Ração Animal/análise
13.
J Neurosci ; 40(43): 8329-8342, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958567

RESUMO

Hippocampal CA1 place cell spatial maps are known to alter their firing properties in response to contextual fear conditioning, a process called "remapping." In the present study, we use chronic calcium imaging to examine remapping during fear retrieval and extinction of an inhibitory avoidance task in mice of both sexes over an extended period of time and with thousands of neurons. We demonstrate that hippocampal ensembles encode space at a finer scale following fear memory acquisition. This effect is strongest near the shock grid. We also characterize the long-term effects of shock on place cell ensemble stability, demonstrating that shock delivery induces several days of high fear and low between-session place field stability, followed by a new, stable spatial representation that appears after fear extinction. Finally, we identify a novel group of CA1 neurons that robustly encode freeze behavior independently from spatial location. Thus, following fear acquisition, hippocampal CA1 place cells sharpen their spatial tuning and dynamically change spatial encoding stability throughout fear learning and extinction.SIGNIFICANCE STATEMENT The hippocampus contains place cells that encode an animal's location. This spatial code updates, or remaps, in response to environmental change. It is known that contextual fear can induce such remapping; in the present study, we use chronic calcium imaging to examine inhibitory avoidance-induced remapping over an extended period of time and with thousands of neurons and demonstrate that hippocampal ensembles encode space at a finer scale following electric shock, an effect which is enhanced by threat proximity. We also identify a novel group of freeze behavior-activated neurons. These results suggest that, more than merely shuffling their spatial code following threat exposure, place cells enhance their spatial coding with the possible benefit of improved threat localization.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Animais , Aprendizagem da Esquiva , Comportamento Animal/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio , Feminino , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia
14.
Bull Environ Contam Toxicol ; 107(3): 544-552, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33999280

RESUMO

Some effects of biochar on soil properties (such as pore water DOC) are not very clear. The changes of soil properties [cation exchange capacity (CEC)], pore water properties [pH, dissolved organic carbon (DOC), and Cd concentration (CPW-Cd)], Cd concentration measured by diffusive gradients in thin films (CDGT-Cd), and available Cd content (Cd in weak acid extractable state and reducible state, CBCR-Cd) determined by the BCR sequential extraction procedure over time after biochar addition were studied by soil incubation and potted corn experiments with five soils from a mining area. The results showed increases of 20.3%-64.6% in CEC and 0.34-1.02 in pH (both p < 0.05) in the soil incubation after adding biochar. The DOC concentration was reduced by 8.2%-33.2% (p < 0.05). CPW-Cd, CDGT-Cd, and CBCR-Cd decreased by 14.2%-47.2%, 15.3%-47.9%, and 22.3%-61.4%, respectively. During the corn cultivation phase, CEC increased by 5.1%-29.0%, and DOC concentration decreased by 10.4%-41.3% (p < 0.05). CPW-Cd, CDGT-Cd, and CBCR-Cd decreased by 5.9%-22.4%, 7.2%-25.1%, and 10.5%-64.8%, respectively. Biochar effectively increased the biomass of corn roots and reduced the concentration of Cd in the roots. Biochar altered the properties of soil and pore water, reduced the bioavailability of Cd in soil, and mitigated the harm to corn caused by Cd.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Solo , Poluentes do Solo/análise , Água
15.
J Gene Med ; 22(12): e3270, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32893379

RESUMO

BACKGROUND: The micro RNA (miRNA)/histone deacetylase 9 (HDAC9) signaling axis has been reported to be involved in initiating and developing multiple malignant tumors. In the present study, we aimed to determine whether miR-211-5p serves as a post-transcriptional regulator in bladder cancer (BCa) cell proliferation and apoptosis by targeting HDAC9. METHODS: miRNA expression profiling of BCa tissues and para-carcinoma tissues was screened by miRNA microarray. After transfection with miR-211-5p mimics or short hairpin RNA of HDAC9 (sh-HDAC9), mRNA and protein expression was evaluated using a quantitative reverse transcription-polymerase chain reaction and western blotting, respectively. A bioinformatics algorithm was used, and a dual-luciferase reporter assay was performed to validate HDAC9 as a direct target of miR-211-5p. Cell proliferation was analyzed by the 3-(4, 5-dimethylthiazl2-yl)-2,5-diphenyltetazolium bromide (MTT) assay. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) detection was used to evaluate apoptosis in 5637 and T24 cells. A transwell assay was used to assess migration and invasion. RESULTS: miR-211-5p is down-regulated in BCa tumor tissues and cell lines. miR-211-5p is identified as an independent biomarker for predicting overall survival. HDAC9 is a direct target of miR-211-5p, and overexpression of miR-211-5p represses HDAC9 protein expression in vitro. Overexpression of miR-211-5p or HDAC9 knockdown significantly inhibits proliferation, migration and invasion of 5637 and T24 cells, and also induces cell apoptosis. CONCLUSIONS: miR-211-5p may play a role as a tumor suppressor and as a favourable prognostic marker in BCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , MicroRNAs/genética , Proteínas Repressoras/metabolismo , Neoplasias da Bexiga Urinária/patologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Histona Desacetilases/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Repressoras/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
16.
Mediators Inflamm ; 2020: 7141970, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082711

RESUMO

The flavonoid apigenin is common to many plants. Although the responsible mechanisms have yet to be elucidated, apigenin demonstrates tumor suppression in vitro and in vivo. This study uses an azoxymethane (AOM)/dextran sodium sulfate- (DSS-) induced colon cancer mouse model to investigate apigenin's potential mechanism of action exerted through its effects upon gut microbiota. The size and quantity of tumors were reduced significantly in the apigenin treatment group. Using 16S rRNA high-throughput sequencing of fecal samples, the composition of gut microbiota was significantly affected by apigenin. Further experiments in which gut microbiota were reduced and feces were transplanted provided further evidence of apigenin-modulated gut microbiota exerting antitumor effects. Apigenin was unable to reduce the number or size of tumors when gut microbiota were depleted. Moreover, tumor inhibition effects were initiated following the transplant of feces from mice treated with apigenin. Our findings suggest that the effect of apigenin on the composition of gut microbiota can suppress tumors.


Assuntos
Apigenina/farmacologia , Apigenina/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Azoximetano/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , RNA Ribossômico 16S/genética
17.
J Neurosci ; 38(37): 7935-7951, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209204

RESUMO

Men are generally superior to women in remembering spatial relationships, whereas the reverse holds for semantic information, but the neurobiological bases for these differences are not understood. Here we describe striking sexual dimorphism in synaptic mechanisms of memory encoding in hippocampal field CA1, a region critical for spatial learning. Studies of acute hippocampal slices from adult rats and mice show that for excitatory Schaffer-commissural projections, the memory-related long-term potentiation (LTP) effect depends upon endogenous estrogen and membrane estrogen receptor α (ERα) in females but not in males; there was no evident involvement of nuclear ERα in females, or of ERß or GPER1 (G-protein-coupled estrogen receptor 1) in either sex. Quantitative immunofluorescence showed that stimulation-induced activation of two LTP-related kinases (Src, ERK1/2), and of postsynaptic TrkB, required ERα in females only, and that postsynaptic ERα levels are higher in females than in males. Several downstream signaling events involved in LTP were comparable between the sexes. In contrast to endogenous estrogen effects, infused estradiol facilitated LTP and synaptic signaling in females via both ERα and ERß. The estrogen dependence of LTP in females was associated with a higher threshold for both inducing potentiation and acquiring spatial information. These results indicate that the observed sexual dimorphism in hippocampal LTP reflects differences in synaptic kinase activation, including both a weaker association with NMDA receptors and a greater ERα-mediated kinase activation in response to locally produced estrogen in females. We propose that male/female differences in mechanisms and threshold for field CA1 LTP contribute to differences in encoding specific types of memories.SIGNIFICANCE STATEMENT There is good evidence for male/female differences in memory-related cognitive function, but the neurobiological basis for this sexual dimorphism is not understood. Here we describe sex differences in synaptic function in a brain area that is critical for learning spatial cues. Our results show that female rodents have higher synaptic levels of estrogen receptor α (ERα) and, in contrast to males, require membrane ERα for the activation of signaling kinases that support long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning. The additional requirement of estrogen signaling in females resulted in a higher threshold for both LTP and hippocampal field CA1-dependent spatial learning. These results describe a synaptic basis for sexual dimorphism in encoding spatial information.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Caracteres Sexuais , Aprendizagem Espacial/fisiologia , Sinapses/fisiologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Estradiol/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fosforilação , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Aprendizagem Espacial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
18.
J Transl Med ; 17(1): 154, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088562

RESUMO

BACKGROUND: The onset of chronic fatigue syndrome (CFS) has been shown to be associated with several immunological conditions such as infections or atopy. The aim of this study was to clarify the risk of chronic fatigue syndrome following the diagnosis of psoriasis, an immune-related dermatological disease, by analyzing the National Health Insurance Research Database of Taiwan. METHOD: 2616 patients aged 20 years or older with newly diagnosed psoriasis during 2004-2008 and 10,464 participants without psoriasis were identified. Both groups were followed up until the diagnoses of CFS were made at the end of 2011. RESULTS: The relationship between psoriasis and the subsequent risk of CFS was estimated through Cox proportional hazards regression analysis, with the incidence density rates being 2.27 and 3.58 per 1000 person-years among the non-psoriasis and psoriasis populations, respectively (adjusted hazard ratio [HR] = 1.48, with 95% confidence interval [CI] 1.07-2.06). In the stratified analysis, the psoriasis group were consistently associated with a higher risk of CFS in male sex (HR = 2.05, 95% CI 1.31-3.20) and age group of ≥ 60 years old (HR = 2.32, 95% CI 1.33-4.06). In addition, we discovered that the significantly increased risk of CFS among psoriasis patients is attenuated after they receive phototherapy and/or immunomodulatory drugs. CONCLUSIONS: The data from this population-based retrospective cohort study revealed that psoriasis is associated with an elevated risk of subsequent CFS, which is differentiated by sex and age.


Assuntos
Síndrome de Fadiga Crônica/epidemiologia , Síndrome de Fadiga Crônica/etiologia , Psoríase/complicações , Adulto , Estudos de Coortes , Comorbidade , Intervalos de Confiança , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco , Índice de Gravidade de Doença , Taiwan/epidemiologia , Adulto Jovem
19.
Cereb Cortex ; 28(7): 2253-2266, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28520937

RESUMO

Endocannabinoids (ECBs) depress transmitter release at sites throughout the brain. Here, we describe another form of ECB signaling that triggers a novel form of long-term potentiation (LTP) localized to the lateral perforant path (LPP) which conveys semantic information from cortex to hippocampus. Two cannabinoid CB1 receptor (CB1R) signaling cascades were identified in hippocampus. The first is pregnenolone sensitive, targets vesicular protein Munc18-1 and depresses transmitter release; this cascade is engaged by CB1Rs in Schaffer-Commissural afferents to CA1 but not in the LPP, and it does not contribute to LTP. The second cascade is pregnenolone insensitive and LPP specific; it entails co-operative CB1R/ß1-integrin signaling to effect synaptic potentiation via stable enhancement of transmitter release. The latter cascade is engaged during LPP-dependent learning. These results link atypical ECB signaling to the encoding of a fundamental component of episodic memory and suggest a novel route whereby endogenous and exogenous cannabinoids affect cognition.


Assuntos
Córtex Cerebral/fisiologia , Endocanabinoides/metabolismo , Hipocampo/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Transdução de Sinais/fisiologia , Animais , Inibidores Enzimáticos/farmacologia , GABAérgicos/farmacologia , Hipocampo/citologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Munc18/deficiência , Proteínas Munc18/genética , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Transtornos da Percepção/genética , Transtornos da Percepção/patologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
J Neurosci ; 37(30): 7096-7110, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28630256

RESUMO

Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABAA receptor (GABAAR) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABAAR endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABAAR endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABAAR endocytosis and CPA extinction. The crucial role of GABAAR endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABAAR endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABAAR endocytosis.SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories.


Assuntos
Aprendizagem da Esquiva/fisiologia , Endocitose/fisiologia , Extinção Psicológica/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de GABA-A/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Masculino , Rememoração Mental/fisiologia , Ratos , Ratos Sprague-Dawley , Repressão Psicológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA