Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386543

RESUMO

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Assuntos
Cromatina/química , Cromatina/genética , Metilação de DNA , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização in Situ Fluorescente , Lisina/genética , Lisina/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição SOXB1/genética , Proteína de Homoeobox de Baixa Estatura/genética , Fatores de Transcrição/genética
2.
Genome Res ; 34(5): 740-756, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38744529

RESUMO

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Assuntos
Adenina , Metilação de DNA , Tetrahymena thermophila , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenina/metabolismo , Adenina/análogos & derivados , Replicação do DNA , DNA de Protozoário/genética , DNA de Protozoário/metabolismo
3.
Blood ; 135(11): 845-856, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31932841

RESUMO

Mutations in the epigenetic regulators DNMT3A and IDH1/2 co-occur in patients with acute myeloid leukemia and lymphoma. In this study, these 2 epigenetic mutations cooperated to induce leukemia. Leukemia-initiating cells from Dnmt3a-/- mice that express an IDH2 neomorphic mutant have a megakaryocyte-erythroid progenitor-like immunophenotype, activate a stem-cell-like gene signature, and repress differentiated progenitor genes. We observed an epigenomic dysregulation with the gain of repressive H3K9 trimethylation and loss of H3K9 acetylation in diseased mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). HDAC inhibitors rapidly reversed the H3K9 methylation/acetylation imbalance in diseased mouse HSPCs while reducing the leukemia burden. In addition, using targeted metabolomic profiling for the first time in mouse leukemia models, we also showed that prostaglandin E2 is overproduced in double-mutant HSPCs, rendering them sensitive to prostaglandin synthesis inhibition. These data revealed that Dnmt3a and Idh2 mutations are synergistic events in leukemogenesis and that HSPCs carrying both mutations are sensitive to induced differentiation by the inhibition of both prostaglandin synthesis and HDAC, which may reveal new therapeutic opportunities for patients carrying IDH1/2 mutations.


Assuntos
Transformação Celular Neoplásica/genética , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias Hematológicas/genética , Hematopoese/genética , Isocitrato Desidrogenase/genética , Mutação , Animais , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Sequenciamento de Cromatina por Imunoprecipitação , Metilação de DNA , DNA Metiltransferase 3A , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Histonas/metabolismo , Humanos , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout
4.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144588

RESUMO

Phycocyanin is a blue fluorescent protein with multi-bioactive functions. However, the multi-bioactivities and spectral stability of phycocyanin are susceptible to external environmental conditions, which limit its wide application. Here, the structure, properties, and biological activity of phycocyanin were discussed. This review highlights the significance of the microcapsules' wall materials which commonly protect phycocyanin from environmental interference and summarizes the current preparation principles and characteristics of microcapsules in food and pharma industries, including spray drying, electrospinning, electrospraying, liposome delivery, sharp-hole coagulation baths, and ion gelation. Moreover, the major technical challenge and corresponding countermeasures of phycocyanin microencapsulation are also appraised, providing insights for the broader application of phycocyanin.


Assuntos
Lipossomos , Ficocianina , Cápsulas/química
5.
J Cell Mol Med ; 24(5): 3139-3148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970902

RESUMO

Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1ß), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1ß, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3-/- ) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3-/- mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Interleucina-1beta/genética , Pneumonia/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Vitamina B 6/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Transdução de Sinais
6.
J Cell Physiol ; 234(12): 21601-21612, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31115050

RESUMO

Circular RNAs (circRNAs) are stable and abundantly expressed in vivo but are abnormally expressed in several diseases. This study aimed to identify circRNAs acting as potential biomarkers for cardiovascular disease (CVD). Research were retrieved from the articles published by September 2018 in eight databases to compare circRNA expression profiles between CVD and non-CVD in human and animal models. Meta-analysis under a random effects model was conducted. Subgroup analysis of tissue, species, and disease-specific circRNAs was examined. Sensitivity analysis was performed to explain the uncertainty among all studies. Diagnostic accuracy of circRNAs in CVD was analyzed to testify the discriminative ability. Bioinformatics analysis including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was conducted. Among 6,284 differentially expressed circRNAs from 32 original studies, only 322 circRNAs were reported in three or more studies. The meta-analysis identified 63 significantly dysregulated circRNAs, 44 upregulated and 19 downregulated. Among the tissue-specific or disease-specific circRNAs identified in the subgroup analysis, two circRNAs (circCDKN2BAS and circMACF1) showed the potential to be circulating biomarkers for CVD. Sensitivity analysis demonstrated 69% of circRNAs were in conformity with the overall analysis. The pooled diagnostic odds ratio was 2.94 (95% confidence interval [CI], 2.35-3.58), and the overall area under the curve value was 0.86 (95% CI, 0.83-0.89). GO and KEGG enrichment analyses indicated that the target genes of circRNAs participate in cardiogenesis-related processes and pathways. This study demonstrates circRNAs have a high diagnostic value as potential biomarkers for CVD, and two candidate circRNAs, circCDKN2BAS and circMACF1, are potential circulating biomarkers for CVD diagnosis and treatment.


Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/genética , RNA Circular/genética , Animais , Biologia Computacional/métodos , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Humanos , Regulação para Cima/genética
7.
BMC Genomics ; 20(1): 162, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819105

RESUMO

BACKGROUND: Understanding how transcription occurs requires the integration of genome-wide and locus-specific information gleaned from robust technologies. Chromatin immunoprecipitation (ChIP) is a staple in gene expression studies, and while genome-wide methods are available, high-throughput approaches to analyze defined regions are lacking. RESULTS: Here, we present carbon copy-ChIP (2C-ChIP), a versatile, inexpensive, and high-throughput technique to quantitatively measure the abundance of DNA sequences in ChIP samples. This method combines ChIP with ligation-mediated amplification (LMA) and deep sequencing to probe large genomic regions of interest. 2C-ChIP recapitulates results from benchmark ChIP approaches. We applied 2C-ChIP to the HOXA cluster to find that a region where H3K27me3 and SUZ12 linger encodes HOXA-AS2, a long non-coding RNA that enhances gene expression during cellular differentiation. CONCLUSIONS: 2C-ChIP fills the need for a robust molecular biology tool designed to probe dedicated genomic regions in a high-throughput setting. The flexible nature of the 2C-ChIP approach allows rapid changes in experimental design at relatively low cost, making it a highly efficient method for chromatin analysis.


Assuntos
Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Diferenciação Celular/genética , Células Cultivadas , Epigênese Genética , Expressão Gênica , Genes Homeobox , Genômica , Humanos , RNA Longo não Codificante/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
8.
J Cell Mol Med ; 22(11): 5504-5517, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30091830

RESUMO

Sirtuin3 (SIRT3) is associated with oxidative stress and lifespan. However, the possible mechanisms underlying its influence are unknown. We hypothesized that SIRT3 increases the antioxidant capacity of aged cells and improves the efficacy of human mesenchymal stem cell (hMSC) therapy for ischaemic heart diseases in aged patients. In vitro, the antioxidant capacity of old hMSCs (O-hMSCs) was increased after SIRT3 overexpression using a gene transfection technique, while the antioxidant capacity of young hMSCs (Y-hMSCs) was decreased by SIRT3 silencing. The levels of forkhead box O3a (FoxO3a) in the nucleus, and antioxidant enzymes Mn-superoxide dismutase (MnSOD) and catalase (CAT) increased in SIRT3-overexpressed O-hMSCs while they decreased in SIRT3-silenced Y-hMSCs after oxidative stress. Following myocardial infarction in adult rats in vivo, infarct size decreased and cardiac function was significantly enhanced after cell transplantation with SIRT3 overexpressed O-hMSCs. The number of apoptotic cells decreased and the survival rate of transplanted cells increased following SIRT3 overexpression in O-hMSCs. SIRT3 protects aged hMSCs against oxidative stress by positively regulating antioxidant enzymes (MnSOD and CAT) via increasing the expression of FoxO3a in the nucleus. The efficacy of aged hMSC transplantation therapy for ischaemic heart diseases can be improved by SIRT3 overexpression.


Assuntos
Envelhecimento/genética , Infarto do Miocárdio/genética , Isquemia Miocárdica/genética , Sirtuína 3/genética , Envelhecimento/patologia , Animais , Antioxidantes , Medula Óssea/metabolismo , Catalase/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Isquemia Miocárdica/patologia , Isquemia Miocárdica/terapia , Estresse Oxidativo/genética , Plasmídeos/genética , Substâncias Protetoras , Ratos , Espécies Reativas de Oxigênio , Sirtuína 3/administração & dosagem , Superóxido Dismutase/genética , Transfecção
9.
Yao Xue Xue Bao ; 51(8): 1316-24, 2016 08.
Artigo em Zh | MEDLINE | ID: mdl-29906041

RESUMO

The integrity of poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-PCL) micelles transcellular transported across madin-darby canine kidney(MDCK) epithelial cells was investigated. Fluorescein isothiocyanate isomer I(FITC) was conjugated to PEG-PCL and the product PEG-PCL-FITC was identified by fluorescence spectra. Two micelles were prepared using the thin-film hydration method: 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) co-loaded PEG-PCL micelles (DiO-DiI-M), DiI loaded and PEG-PCL-FITC contained micelles(FITC-DiI-M). The size of the micelles was characterized by dynamic light scattering analysis using a Malvern Zetasizer Nano ZS and it turned out that the particle sizes of both micelles were about 30 nm with identical polydispersity index(PDI). The stability of the micelles in phosphate buffer saline(PBS) was monitored using fluorescence spectra and both micelles were stable within 4 h in PBS. The integrity of PEG-PCL micelles in the transcellular process across MDCK epithelial cell monolayer at 1 and 4 h was investigated using laser confocal scanning microscope and Förster resonance energy transfer(FRET) technology. The Person's coefficient and FRET efficiency of both Transwell layer and Receive layer were recorded. The results show that the FRET efficiency and Person's coefficient of the Receive layer was consistent with that of Transwell layer for both the micelles at 1 h, but decreased at 4 h and FITC-DiI-M decreased more significantly than Di O-DiI-M. The results indicated that the micelles could transport across the MDCK monolayer intactly at 1 h but some of them were disassembled during the 4 h transportation process.


Assuntos
Portadores de Fármacos/química , Transferência Ressonante de Energia de Fluorescência , Micelas , Animais , Transporte Biológico , Caproatos , Cães , Humanos , Isotiocianatos , Lactonas , Células Madin Darby de Rim Canino , Tamanho da Partícula , Poliésteres , Polietilenoglicóis
10.
Yao Xue Xue Bao ; 50(10): 1232-9, 2015 Oct.
Artigo em Zh | MEDLINE | ID: mdl-26837167

RESUMO

Molecular target-based cancer therapy is playing a more and more important role in cancer therapy because of its high specificity, good tolerance and so on. There are different kinds of molecular targeted drugs such as monoclonal antibodies and small molecular kinase inhibitors, and more than 50 drugs have been approved since 1997. When the first monoclonal antibody, rituximab, was on the market. The development of molecular target-based cancer therapeutics has become the main approach. Based on this, we summarized the drugs approved by FDA and introduced their mechanism of actions and clinical applications. In order to incorporate most molecular targeted drugs and describe clearly various characteristics, we divided them into four categories: drugs related to EGFR, drugs related to antiangiogenesis, drugs related to specific antigen and other targeted drugs. The purpose of this review is to provide a current status of this field and discover the main problems in the molecular targeted therapy.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese , Anticorpos Monoclonais , Sistemas de Liberação de Medicamentos , Receptores ErbB/antagonistas & inibidores , Humanos , Inibidores de Proteínas Quinases
11.
J Cell Mol Med ; 18(11): 2298-310, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210848

RESUMO

Sirtuin3 (SIRT3) is an important member of the sirtuin family of protein deacetylases that is localized to mitochondria and linked to lifespan extension in organisms ranging from yeast to humans. As aged cells have less regenerative capacity and are more susceptible to oxidative stress, we investigated the effect of ageing on SIRT3 levels and its correlation with antioxidant enzyme activities. Here, we show that severe oxidative stress reduces SIRT3 levels in young human mesenchymal stromal/stem cells (hMSCs). Overexpression of SIRT3 improved hMSCs resistance to the detrimental effects of oxidative stress. By activating manganese superoxide dismutase (MnSOD) and catalase (CAT), SIRT3 protects hMSCs from apoptosis under stress. SIRT3 expression, levels of MnSOD and CAT, as well as cell survival showed little difference in old versus young hMSCs under normal growth conditions, whereas older cells had a significantly reduced capacity to withstand oxidative stress compared to their younger counterparts. Expression of the short 28 kD SIRT3 isoform was higher, while the long 44 kD isoform expression was lower in young myocardial tissues compared with older ones. These results suggest that the active short isoform of SIRT3 protects hMSCs from oxidative injury by increasing the expression and activity of antioxidant enzymes. The expression of this short isoform decreases in cardiac tissue during ageing, leading to a reduced capacity for the heart to withstand oxidative stress.


Assuntos
Apoptose/genética , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/genética , Sirtuína 3/genética , Envelhecimento , Antioxidantes/metabolismo , Catalase/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/biossíntese , Superóxido Dismutase/genética
12.
Yao Xue Xue Bao ; 49(6): 942-8, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25212045

RESUMO

The aimed of this study was to prepare stabilized thiomers to overcome the poor stability character of traditional thiomers. Poly(acrylic acid)-cysteine (PAA-Cys) was synthesized by conjugating cysteine with poly(acrylic acid) and poly(acrylic acid)-cysteine-6-mercaptonicotinic acid (PAA-Cys-6MNA, stabilized thiomers) was synthesized by grafting a protecting group 6-mercaptonicotinic acid (6MNA) with PAA-Cys. The free thiol of PAA-Cys was determined by Ellmann's reagent method and the ratio of 6MNA coupled was determined by glutathione reduction method. The study of permeation enhancement and stabilized function was conducted by using Franz diffusion cell method, with fluorescein isothiocyanate dextran (FD4) used as model drug. The influence of polymers on tight junctions of Caco-2 cell monolayer was detected with laser scanning confocal fluorescence microscope. The results indicated that both PAA-Cys and PAA-Cys-6MNA could promote the permeation of FD4 across excised rat intestine, and the permeation function of PAA-Cys-6MNA was not influence by the pH of the storage environment and the oxidation of air after the protecting group 6MNA was grafted. The distribution of tight junction protein of Caco-2 cell monolayer F-actin was influenced after incubation with PAA-Cys and PAA-Cys-6MNA. In conclusion, stabilized thiomers (PAA-Cys-6MNA) maintained the permeation function compared with the traditional thiomers (PAA-Cys) and its stability was improved. The mechanism of the permeation enhancement function of the polymers might be related to their influence on tight junction relating proteins of cells.


Assuntos
Resinas Acrílicas/química , Cisteína/química , Ácidos Nicotínicos/química , Compostos de Sulfidrila/química , Actinas/metabolismo , Animais , Células CACO-2 , Dextranos , Fluoresceína-5-Isotiocianato/análogos & derivados , Glutationa , Humanos , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Ratos
13.
Antioxidants (Basel) ; 13(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539794

RESUMO

The Greatwall-family protein kinase Rim15 is associated with the nutrient starvation response, whereas its role in oxidative stress responses remains unclear. Here, acetic acid and peroxide were used as two oxidative stress elicitors. The antioxidant indicator assay under acetic acid stress revealed the impaired growth in rim15Δ related to the regulation of antioxidant systems. Comparative transcriptome analysis revealed that differentially expressed genes (DEGs) are predicted to be mostly regulated by oxidative stress-responsive transcriptional factor Yap1. Among the DEGs, acetic acid stress-induced genes were found, and YAP1 disruption also inhibited their induction. The deletion of Rim15 or the Rim15 kinase domain in yap1Δ did not further decrease the gene expression, suggesting that Rim15 functions together with Yap1 in regulating acetic acid stress-induced genes, which requires Rim15 kinase activity. Additionally, Rim15 regulated H2O2 stress tolerance through partially similar but special mechanisms in that Rim15 kinase activity impacted acetic acid and H2O2 stress tolerance in different degrees, indicating the different mechanisms underlying Rim15-mediated redox regulation against different stressors. These results benefit the better understanding of stress signaling pathways related to Rim15. Given that Rim15 and some of its target genes are conserved across eukaryotes, these results also provide a basis for studies of oxidative stress-related processes in other organisms.

14.
Int J Biol Macromol ; 258(Pt 2): 129041, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154715

RESUMO

Chromatin remodelers are important in maintaining the dynamic chromatin state in eukaryotic cells, which is essential for epigenetic regulation. Among the remodelers, the multi-subunits complex INO80 plays crucial roles in transcriptional regulation. However, current knowledge of chromatin regulation of the core subunit Ino80 on stress adaptation remains mysterious. Here we revealed that overexpressing the chromatin remodeler Ino80 elevated tolerance to multiple stresses in budding yeast Saccharomyces cerevisiae. Analyses of differential chromatin accessibility and global transcription levels revealed an enrichment of genes involved in NCR (nitrogen catabolite repression) under acetic acid stress. We demonstrated that Ino80 overexpression reduced the histone H3 occupancy in the promoter region of the glutamate dehydrogenase gene GDH2 and the allantoinase gene DAL1. Consistently, the decreased occupancy of nucleosome was revealed in the Ino80-inactivation mutant. Further analyses showed that Ino80 was recruited to the specific DNA locus in the promoter region of GDH2. Consistently, Ino80 overexpression facilitated the utilization of non-preferred nitrogen source to enhance ethanol yield under prolonged acetic acid stress. These results demonstrate that Ino80 plays a crucial role in coordinating carbon and nitrogen metabolism during stress adaptation.


Assuntos
Repressão Catabólica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Epigênese Genética , Nucleossomos , Acetatos/metabolismo
15.
Hepatol Int ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594475

RESUMO

BACKGROUND AND AIMS: Performing a Transjugular intrahepatic portal system shunt (TIPS) in patients with portal vein cavernous transformation (CTPV) poses significant challenges. As an alternative, transjugular extrahepatic portal vein shunt (TEPS) may offer a potential solution for these patients. Nonetheless, the effectiveness and safety of TEPS remain uncertain. This case series study aimed to evaluate the efficacy and safety of TEPS in treating patients with CTPV portal hypertension complications. METHODS: The study encompassed a cohort of 22 patients diagnosed with CTPV who underwent TEPS procedures. Of these, 13 patients manifested recurrent hemorrhagic episodes subsequent to conventional therapies, 8 patients grappled with recurrent or refractory ascites, and 1 patient experienced acute bleeding but refused endoscopic treatment. Comprehensive postoperative monitoring was conducted for all patients to rigorously evaluate both the technical and clinical efficacy of the intervention, as well as long-term outcomes. RESULTS: The overall procedural success rate among the 22 patients was 95.5% (21/22).During the TEPS procedure, nine patients were guided by percutaneous splenic access, three patients were guided by percutaneous hepatic access, five patients were guided by transmesenteric vein access from the abdomen, and two patients were guided by catheter marking from the hepatic artery. Additionally, guidance for three patients was facilitated by pre-existing TIPS stents. The postoperative portal pressure gradient following TEPS demonstrated a statistically significant decrease compared to preoperative values (24.95 ± 3.19 mmHg vs. 11.48 ± 1.74 mmHg, p < 0.01).Although three patients encountered perioperative complications, their conditions ameliorated following symptomatic treatment, and no procedure-related fatalities occurred. During a median follow-up period of 14 months, spanning a range of 5 to 39 months, we observed four fatalities. Specifically, one death was attributed to hepatocellular carcinoma, while the remaining three were ascribed to chronic liver failure. During the follow-up period, no instances of shunt dysfunction were observed. CONCLUSIONS: Precision-guided TEPS appears to be a safe and efficacious intervention for the management of CTPV.

16.
Part Fibre Toxicol ; 10: 47, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24088372

RESUMO

BACKGROUND: Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. OBJECTIVES: Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared. METHODS: In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice. RESULTS: All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs. CONCLUSIONS: These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more scientific understandings on the nanotoxicity of amphiphilic polymeric micelles.


Assuntos
Portadores de Fármacos/toxicidade , Nanopartículas/toxicidade , Poliésteres/toxicidade , Polietilenoglicóis/toxicidade , Tensoativos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/imunologia , Portadores de Fármacos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Micelas , Estrutura Molecular , Nanopartículas/química , Especificidade de Órgãos , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Propriedades de Superfície , Tensoativos/química , Testes de Toxicidade
17.
Yao Xue Xue Bao ; 48(3): 417-22, 2013 Mar.
Artigo em Zh | MEDLINE | ID: mdl-23724658

RESUMO

iRGD-modified sterically stabilized liposomes loaded doxorubicin (iRGD-SSL-DOX) were prepared and their cellular toxicity and anti-tumor efficacy were evaluated, comparing to doxorubixin loaded sterically stabilized liposomes (SSL-DOX) and RGD modified doxorubixin loaded sterically stabilized liposomes (RGD-SSL-DOX). The iRGD peptide, with both tumor targeting and cell penetrating functions, was conjugated to DSPE-PEG-NHS and DSPE-PEG-iRGD was obtained. DSPE-PEG-RGD was gained in the same way. iRGD-SSL-DOX, RGD-SSL-DOX and SSL-DOX were prepared by ammonium sulfate gradient method. The size and zeta potential of the liposomes were characterized by dynamic laser light scattering. The cellular toxicity study was done on B16 melanoma cell line and the anti-tumor efficacy study was carried on B16 cell line bearing C57BL/6 mice. The results showed that the particle sizes of liposomes were all around 90-100 nm. DOX entrapment efficiency was above 95%. The formulations were with good preparation reproducibility. iRGD-SSL-DOX showed no significant difference in B16 cellular toxicity with SSL-DOX and RGD-SSL-DOX, but the anti-tumor efficacy on B16 melanoma bearing C57BL/6 mice was significantly better than that of SSL-DOX, similar as that of RGD-SSL-DOX. Therefore, iRGD modified liposomes loaded DOX would be a promising drug delivery system for tumor therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Melanoma Experimental/patologia , Oligopeptídeos/farmacologia , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Transplante de Neoplasias , Oligopeptídeos/química , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Carga Tumoral/efeitos dos fármacos
18.
Yao Xue Xue Bao ; 48(9): 1484-90, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24358785

RESUMO

The transcellular process of coumarin 6 (C6) loaded poly(ethyl ethylene phosphate)-co-poly (epsilon-caprolactone) (PEG-PCL) micelles on Madin-Darby Canine Kidney (MDCK) epithelial cells was investigated. C6 loaded PEG-PCL micelles were prepared using the thin-film hydration method. The size of the micelles was characterized by dynamic light scattering analysis using a Malvern Zetasizer Nano ZS. The critical micelle concentration (CMC) was determined by pyrene fluorescence probe method. And the transcellular process of the micelles on MDCK epithelial cells was investigated by using transmission electron microscope, laser confocal scanning microscope and Förster resonance energy transfer technology. It turned out that the size of PEG-PCL micelles was about 30 nm and CMC was 1.01 microg x mL(-1). PEG-PCL micelles were endocytosed in intact form and they could deliver hydrophobic drugs across the basolateral membrane of the epithelial cells. However, PEG-PCL is hardly being transported in micelle formation itself. The transportation of C6 by PEG-PCL micelles was through the transcellular pathway, yet not the paracellular pathway.


Assuntos
Cumarínicos/farmacocinética , Sistemas de Liberação de Medicamentos , Lactonas/química , Micelas , Polietilenoglicóis/química , Tiazóis/farmacocinética , Animais , Transporte Biológico , Cães , Portadores de Fármacos , Células Madin Darby de Rim Canino , Tamanho da Partícula
19.
Microbiol Spectr ; : e0301122, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975803

RESUMO

Responses to acetic acid toxicity in the budding yeast Saccharomyces cerevisiae have widespread implications in the biorefinery of lignocellulosic biomass and food preservation. Our previous studies revealed that Set5, the yeast lysine methyltransferase and histone H4 methyltransferase, was involved in acetic acid stress tolerance. However, it is still mysterious how Set5 functions and interacts with the known stress signaling network. Here, we revealed that elevated phosphorylation of Set5 during acetic acid stress is accompanied by enhanced expression of the mitogen-activated protein kinase (MAPK) Hog1. Further experiments uncovered that the phosphomimetic mutation of Set5 endowed yeast cells with improved growth and fermentation performance and altered transcription of specific stress-responsive genes. Intriguingly, Set5 was found to bind the coding region of HOG1 and regulate its transcription, along with increased expression and phosphorylation of Hog1. A protein-protein interaction between Set5 and Hog1 was also revealed. In addition, modification of Set5 phosphosites was shown to regulate reactive oxygen species (ROS) accumulation, which is known to affect yeast acetic acid stress tolerance. The findings in this study imply that Set5 may function together with the central kinase Hog1 to coordinate cell growth and metabolism in response to stress. IMPORTANCE Hog1 is the yeast homolog of p38 MAPK in mammals that is conserved across eukaryotes, and it plays crucial roles in stress tolerance, fungal pathogenesis, and disease treatments. Here, we provide evidence that modification of Set5 phosphorylation sites regulates the expression and phosphorylation of Hog1, which expands current knowledge on upstream regulation of the Hog1 stress signaling network. Set5 and its homologous proteins are present in humans and various eukaryotes. The newly identified effects of Set5 phosphorylation site modifications in this study benefit an in-depth understanding of eukaryotic stress signaling, as well as the treatment of human diseases.

20.
Cancer Discov ; 13(3): 724-745, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455589

RESUMO

Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein with a wide range of biological functions. In 30% of acute myeloid leukemia (AML), the terminal exon of NPM1 is often found mutated, resulting in the addition of a nuclear export signal and a shift of the protein to the cytoplasm (NPM1c). AMLs carrying this mutation have aberrant expression of the HOXA/B genes, whose overexpression leads to leukemogenic transformation. Here, for the first time, we comprehensively prove that NPM1c binds to a subset of active gene promoters in NPM1c AMLs, including well-known leukemia-driving genes-HOXA/B cluster genes and MEIS1. NPM1c sustains the active transcription of key target genes by orchestrating a transcription hub and maintains the active chromatin landscape by inhibiting the activity of histone deacetylases. Together, these findings reveal the neomorphic function of NPM1c as a transcriptional amplifier for leukemic gene expression and open up new paradigms for therapeutic intervention. SIGNIFICANCE: NPM1 mutation is the most common mutation in AML, yet the mechanism of how the mutant protein results in AML remains unclear. Here, for the first time, we prove mutant NPM1 directly binds to active chromatin regions and hijacks the transcription of AML-driving genes. See related article by Uckelmann et al., p. 746. This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Cromatina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA