RESUMO
Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.
Assuntos
Diferenciação Celular , Colite , Histona Desacetilases , Correpressor 1 de Receptor Nuclear , Células Th17 , Animais , Células Th17/citologia , Células Th17/metabolismo , Células Th17/imunologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Camundongos , Colite/genética , Colite/metabolismo , Colite/imunologia , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/genética , Interleucina-17/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Humanos , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Interleucina-2/metabolismoRESUMO
Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.
Assuntos
Lipoilação , Vírus de Plantas , Nicotiana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.
Assuntos
Vírion , Zinco , Zinco/metabolismo , Vírion/metabolismo , Proteínas do Capsídeo/metabolismo , Montagem de Vírus/fisiologia , Vírus de Plantas/metabolismo , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Cisteína/metabolismo , Proteínas Virais/metabolismo , MorfogêneseRESUMO
Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were â¼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.
Assuntos
Anticorpos Neutralizantes , Proteínas do Capsídeo , Vírus da Hepatite E , Hepatite E , Anticorpos de Domínio Único , Vírus da Hepatite E/imunologia , Animais , Proteínas do Capsídeo/imunologia , Anticorpos de Domínio Único/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Hepatite E/imunologia , Camelus/imunologia , Epitopos/imunologia , Células Hep G2 , Reações Cruzadas/imunologia , Genótipo , Especificidade de Anticorpos/imunologiaRESUMO
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.
Assuntos
DNA Nucleotidilexotransferase , Oligonucleotídeos , DNA Nucleotidilexotransferase/metabolismo , DNA Nucleotidilexotransferase/química , Animais , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Camundongos , Bovinos , DNA/química , DNA/biossíntese , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , Moldes GenéticosRESUMO
The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.
Assuntos
Cloroplastos/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/virologia , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Nicotiana/genéticaRESUMO
The hub metabolite, nicotinamide adenine dinucleotide (NAD), can be used as an initiating nucleotide in RNA synthesis to result in NAD-capped RNAs (NAD-RNA). Since NAD has been heightened as one of the most essential modulators in aging and various age-related diseases, its attachment to RNA might indicate a yet-to-be discovered mechanism that impacts adult life-course. However, the unknown identity of NAD-linked RNAs in adult and aging tissues has hindered functional studies. Here, we introduce ONE-seq method to identify the RNA transcripts that contain NAD cap. ONE-seq has been optimized to use only one-step chemo-enzymatic biotinylation, followed by streptavidin capture and the nudix phosphohydrolase NudC-catalyzed elution, to specifically recover NAD-capped RNAs for epitranscriptome and gene-specific analyses. Using ONE-seq, we discover more than a thousand of previously unknown NAD-RNAs in the mouse liver and reveal epitranscriptome-wide dynamics of NAD-RNAs with age. ONE-seq empowers the identification of NAD-capped RNAs that are responsive to distinct physiological states, facilitating functional investigation into this modification.
Assuntos
NAD , Capuzes de RNA , Animais , Camundongos , NAD/genética , NAD/metabolismo , Nucleotídeos , Monoéster Fosfórico Hidrolases , Capuzes de RNA/genética , Transcriptoma , Epigênese GenéticaRESUMO
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Assuntos
Proteínas Cromossômicas não Histona , Proteínas Nucleares , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Reparo do DNA , Mamíferos/metabolismo , Proteínas Nucleares/genética , CoesinasRESUMO
BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.
Assuntos
Ansiedade , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Hipóxia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Ansiedade/etiologia , Ansiedade/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/complicações , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicologia , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Microglia/metabolismo , Fator de Transcrição STAT1/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/psicologiaRESUMO
Cucumber (Cucumis sativus L.) flesh is typically colorless or pale green. Flesh with yellow or orange pigment, determined mainly by carotenoid content and composition, is mostly found in semi-wild Xishuangbanna cucumber, which has a very narrow genetic background. Here, we identified a spontaneous cucumber mutant with yellow flesh (yf-343), which accumulated more ß-cryptoxanthin and less lutein than regular cultivated European glasshouse-type cucumbers. Genetic analysis revealed that the yellow flesh phenotype was controlled by a single recessive gene. Through fine mapping and gene sequencing, we identified the candidate gene C. sativus yellow flesh 2 (Csyf2), encoding an abscisic acid (ABA) 8'-hydroxylase. Overexpression and RNAi-silencing of Csyf2 in cucumber hairy roots produced lower and higher ABA contents than in non-transgenic controls, respectively. Further, RNA-seq analysis suggested that genes related to ABA signal transduction were differentially expressed in fruit flesh between yf-343 and its wild type, BY, with white flesh. The carotenoid biosynthesis pathway was specifically enriched in fruit flesh at 30 days after pollination when yf-343 fruit flesh turns yellow. Our findings highlight a promising target for gene editing to increase carotenoid content, expanding our genetic resources for pigmented cucumber flesh breeding for improving the nutritional quality of cucumber.
Assuntos
Cucumis sativus , Cucumis sativus/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Frutas/genéticaRESUMO
rAj-Tspin, a soluble recombinant peptide from Apostichopus japonicus, can inhibit the integrin ß1 (ITGB1)/FAK/AKT signaling pathway in hepatocellular carcinoma (HCC) via cell epithelial-mesenchymal transition (EMT) and apoptosis. Zyxin (ZYX) is a focal adhesion protein that is considered a novel mediator of EMT and apoptosis. However, the inhibitory mechanisms of rAj-Tspin in HCC and whether it is related to ZYX are unclear. We examined the antitumor effect of rAj-Tspin on the Huh7 human HCC cell line and on a nude mouse model generated via subcutaneous injection or orthotopic intrahepatic transplantation of Huh7 cells. Our results revealed that rAj-Tspin strikingly reduced the viability and promoted the apoptosis of Huh7 cells and inhibited HCC tumor growth in nude mice. rAj-Tspin inhibited ITGB1 and ZYX protein expression in vivo and in vitro in a dose-dependent manner. Mechanistically, the FAK/AKT signaling pathway and the proliferation and invasion of HCC cells were suppressed upon ITGB1 and ZYX knockdown. Moreover, the effect of ITGB1 overexpression on the growth of HCC cells was inhibited by rAj-Tspin. In contrast, the promoting effect of ITGB1 overexpression could be inhibited by ZYX knockdown. ZYX knockdown had no effect on ITGB1 expression. These findings suggest that ZYX is required for the indispensable role of ITGB1 in rAj-Tspin-alleviated HCC and provide an important therapeutic target for HCC. In summary, the anti-HCC effect of rAj-Tspin potentially involves the regulation of the ITGB1/ZYX/FAK/AKT pathway, which in turn impacts EMT and apoptosis.
RESUMO
Flavin adenine dinucleotide (FAD) binding sites play an increasingly important role as useful targets for inhibiting bacterial infections. To reveal protein topological structural information as a reasonable complement for the identification FAD-binding sites, we designed a novel fusion technology according to sequence and complex network. The specially designed feature vectors were combined and fed into CatBoost for model construction. Moreover, due to the minority class (positive samples) is more significant for biological researches, a random under-sampling technique was applied to solve the imbalance. Compared with the previous methods, our methods achieved the best results for two independent test datasets. Especially, the MCC obtained by FADsite and FADsite_seq were 14.37 %-53.37 % and 21.81 %-60.81 % higher than the results of existing methods on Test6; and they showed improvements ranging from 6.03 % to 21.96 % and 19.77 %-35.70 % on Test4. Meanwhile, statistical tests show that our methods significantly differ from the state-of-the-art methods and the cross-entropy loss shows that our methods have high certainty. The excellent results demonstrated the effectiveness of using sequence and complex network information in identifying FAD-binding sites. It may be complementary to other biological studies. The data and resource codes are available at https://github.com/Kangxiaoneuq/FADsite.
Assuntos
Flavina-Adenina Dinucleotídeo , Proteínas , Sítios de Ligação , Proteínas/químicaRESUMO
Mild hypothermia (MH) is an effective measure to alleviate cerebral ischemia-reperfusion (I/R) injury. However, the underlying biological mechanisms remain unclear. This study set out to investigate dynamic changes in urinary proteome due to MH in rats with cerebral I/R injury and explore the neuroprotective mechanisms of MH. A Pulsinelli's four-vessel occlusion (4-VO) rat model was used to mimic global cerebral I/R injury. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the urinary proteome of rats with/without MH (32 °C) treatment after I/R injury. Representative differentially expressed proteins (DEPs) associated with MH were validated by western blotting in hippocampus. A total of 597 urinary proteins were identified, among which 119 demonstrated significant changes associated with MH. Gene Ontology (GO) annotation of the DEPs revealed that MH significantly enriched in endopeptidase activity, inflammatory response, aging, response to oxidative stress and reactive oxygen species, blood coagulation, and cell adhesion. Notably, changes in 12 DEPs were significantly reversed by MH treatment. Among them, 8 differential urinary proteins were previously reported to be closely associated with brain disease, including NP, FZD1, B2M, EPCR, ATRN, MB, CA1and VPS4A. Two representative proteins (FZD1, B2M) were further validated by western blotting in the hippocampus and the results were shown to be consistent with urinary proteomic analysis. Overall, this study strengthens the idea that urinary proteome can sensitively reflect pathophysiological changes in the brain, and appears to be the first study to explore the neuroprotective effects of MH by urinary proteomic analysis. FZD1 and B2M may be involved in the most fundamental molecular biological mechanisms of MH neuroprotection.
Assuntos
Isquemia Encefálica , Hipotermia Induzida , Proteômica , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/urina , Proteômica/métodos , Masculino , Hipotermia Induzida/métodos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/urina , Proteoma/metabolismo , Ratos , Hipocampo/metabolismoRESUMO
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-down setup based on dynamic feast/famine regime (150 s) that leads to repetitive cycles with rapid changes in DO availability in glucose-limited chemostat cultures of Penicillium chrysogenum. Such DO feast/famine regime induced a stable and repetitive pattern with a reproducible metabolic response in time, and the dynamic response of intracellular metabolites featured specific differences in terms of both coverage and magnitude in comparison to other dynamic conditions, for example, substrate feast/famine cycles. Remarkably, intracellular sugar polyols were considerably increased as the hallmark metabolites along with a dynamic and higher redox state (NADH/NAD+) of the cytosol. Despite the increased availability of NADPH for penicillin production under the oscillatory DO conditions, this positive effect may be counteracted by the decreased ATP supply. Moreover, it is interesting to note that not only the penicillin productivity was reduced under such oscillating DO conditions, but also that of the unrecyclable byproduct ortho-hydroxyphenyl acetic acid and degeneration of penicillin productivity. Furthermore, dynamic flux profiles showed the most pronounced variations in central carbon metabolism, amino acid (AA) metabolism, energy metabolism and fatty acid metabolism upon the DO oscillation. Taken together, the metabolic responses of P. chrysogenum to DO gradients reported here are important for elucidating metabolic regulation mechanisms, improving bioreactor design and scale-up procedures as well as for constructing robust cell strains to cope with heterogenous industrial culture conditions.
Assuntos
Reatores Biológicos , Oxigênio , Penicillium chrysogenum , Penicillium chrysogenum/metabolismo , Oxigênio/metabolismo , Reatores Biológicos/microbiologia , Penicilinas/metabolismo , Glucose/metabolismo , Microbiologia Industrial/métodosRESUMO
Biodegradable plastics (BPs) are pervasively available as alternatives to traditional plastics, but their natural degradation characteristics and microbial-driven degradation mechanisms are poorly understood, especially in aquatic environments, the primary sink of plastic debris. Herein, the three-month dynamic degradation process of BPs (the copolymer of poly(butylene adipate-co-terephthalate) and polylactic acid (PLA) (PBAT/PLA) and single PLA) in a natural aquatic environment was investigated, with nonbiodegradable plastics polyvinyl chloride, polypropylene, and polystyrene as controls. PBAT/PLA showed the weight loss of 47.4% at 50 days and severe fragmentation within two months, but no significant decay for other plastics. The significant increase in the specific surface area and roughness and the weakening of hydrophobicity within the first month promoted microbial attachment to the PBAT/PLA surface. Then, a complete microbial succession occurred, including biofilm formation, maturation, and dispersion. Metagenomic analysis indicated that plastispheres selectively enriched degraders. Based on the functional genes involved in BPs degradation, a total of 16 high-quality metagenome-assembled genomes of degraders (mainly Burkholderiaceae) were recovered from the PBAT/PLA plastisphere. These microbes showed the greatest degrading potential at the biofilm maturation stage and executed the functions by PLA_depolymerase, polyesterase, hydrolase, and esterase. These findings will enhance understanding of BPs' environmental behavior and microbial roles on plastic degradation.
Assuntos
Plásticos Biodegradáveis , Biodegradação Ambiental , Metagenômica , PlásticosRESUMO
Bromodomain protein 4 (BRD4) is a member of the BET family, and its overexpression is closely associated with the development of many tumors. Inhibition of BRD4 shows great therapeutic potential in anti-tumor, and pan-BRD4 inhibitors show adverse effects of dose limiting toxicity and thrombocytopenia in clinical trials. To improve clinical effects and reduce side effects, more efforts have focused on seeking selective inhibitors of BD1 or BD2. Herein, a series of indole-2-one derivatives were designed and synthesized through docking-guided optimization to find BRD4-BD1 selective inhibitors, and their BRD4 inhibitory and antiproliferation activities were evaluated. Among them, compound 21r had potent BRD4 inhibitory activity (the IC50 values of 41 nM and 313 nM in BD1 and BD2 domain), excellent anti-proliferation (the IC50 values of 4.64 ± 0.30 µM, 0.78 ± 0.03 µM, 5.57 ± 1.03 µM against HL-60, MV-4-11 and HT-29 cells), and displayed low toxicity against normal cell GES-1 cells. Further studies revealed that 21r inhibited proliferation by decreasing the expression of proto-oncogene c-Myc, blocking cell cycle in G0/G1 phase, and inducing apoptosis in MV-4-11 cells in a dose-dependent manner. All the results showed that compound 21r was a potent BRD4 inhibitor with BD1 selectivity, which had potential in treatment of leukemia.
Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Fatores de Transcrição , Humanos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Proto-Oncogene Mas , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proteínas que Contêm BromodomínioRESUMO
BACKGROUND: Cancer and coronary artery disease (CAD) is reported to often co-exist in same individuals, however, whether cancer is directly associated with anatomical severity of CAD is rarely studied. The present study aimed to observe the relationship between newly diagnosed cancer and anatomical severity of CAD, moreover, to investigate effect of inflammation on the relationship of cancer with CAD. METHODS: 374 patients with newly diagnosed cancer who underwent coronary angiography (CAG) were enrolled. Through 1:3 propensity score matching (PSM) to cancer patients based on the age and gender among 51,106 non-cancer patients who underwent CAG, 1122 non-cancer patients were selected as control patients. Anatomical severity of CAD was assessed using SYNTAX score (SXscore) based on coronary angiographic image. SXscore ≤ 22 (highest quartile) was defined as SX-low, and SXscore > 22 as SX-high. The ratio of neutrophil to lymphocyte count (NLR) was used to describe inflammation level. Association between cancer and the anatomical severity of CAD was investigated using logistic regression. RESULTS: Univariate logistic regression analysis showed a correlation between cancer and anatomical severity of CAD (OR: 1.419, 95% CI: 1.083-1.859; P = 0.011). Cancer was associated with increased risk of SX-high after adjusted for common risk factors of CAD (OR: 1.598, 95% CI: 1.172-2.179, P = 0.003). Significant association between cancer and SX-high was revealed among patients with high inflammation (OR: 1.656, 95% CI: 1.099-2.497, P = 0.016), but not among patients with low inflammation (OR: 1.530, 95% CI: 0.973-2.498, P = 0.089). CONCLUSIONS: Cancer was associated with severity of CAD, however, the association between the two diseases was significant among patients with high inflammation rather than among patients with low inflammation.
Assuntos
Doença da Artéria Coronariana , Neoplasias , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Angiografia Coronária , Inflamação , Fatores de RiscoRESUMO
1-Hexadecene has been detected at a level of mg/L in both influent and effluent of wastewater treatment plants situated in chemical/pharmaceutical industrial parks, which poses a potential threat to the environment. However, few reports are available on aerobic metabolic pathways and microorganisms involved in 1-Hexadecene degradation. In this study, a new strain of 1-Hexadecene-degrading bacteria, Bacillus sp. Hex-HIT36 (HIT36), was isolated from the activated sludge of a wastewater treatment plants located in an industrial park. The physicochemical properties and degradation efficacy of HIT36 were investigated. HIT36 was cultured on a medium containing 1-Hexadecene as a sole carbon source; it was found to remove â¼67% of total organic carbon as confirmed by mass spectrometric analysis of intermediate metabolites. Metabolomic and genomic analysis showed that HIT36 possesses various enzymes, namely, pyruvate dehydrogenase, dihydropolyhydroxyl dehydrogenase, and 2-oxoglutarate-2-oxoiron oxidoreductase (subunit alpha), which assist in the metabolization of readily available carbon source or long chain hydrocarbons present in the growth medium/vicinity. This suggests that HIT36 has efficient long-chain alkane degradation efficacy, and understanding the alkane degradation mechanism of this strain can help in developing technologies for the degradation of long-chain alkanes present in wastewater, thereby assisting in the bioremediation of environment.
Assuntos
Bacillus , Biodegradação Ambiental , Metaboloma , Águas Residuárias , Bacillus/metabolismo , Bacillus/genética , Águas Residuárias/microbiologia , Águas Residuárias/química , Genoma Bacteriano , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Alcenos/metabolismo , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos , AlcanosRESUMO
Sludge is one of the primary reservoirs of microplastics (MPs), and the effects of MPs on subsequent sludge treatment raised attention. Given the entry pathways, MPs would exhibit different properties, but the entry pathway-dependent effect of MPs on sludge treatment performance and the fates of antibiotic resistance genes (ARGs), another high-risk emerging contaminant, were seldom documented. Herein, MPs with two predominant entry pathways, including wastewater-derived (WW-derived) and anaerobic digestion-introduced (AD-introduced), were used to investigate the effects on AD performance and ARGs abundances. The results indicated that WW-derived MPs, namely the MPs accumulated in sludge during the wastewater treatment process, exhibited significant inhibition on methane production by 22.8%-71.6%, while the AD-introduced MPs, being introduced in the sludge AD process, slightly increased the methane yield by 4.7%-17.1%. Meanwhile, MPs were responsible for promoting transmission of target ARGs, and polyethylene terephthalate MPs (PET-MPs) showed a greater promotion effect (0.0154-0.0936) than polyamide MPs (PA-MPs) (0.0013-0.0724). Compared to size, entry pathways and types played more vital roles on MPs influences. Investigation on mechanisms based on microbial community structure revealed characteristics (aging degree and types) of MPs determined the differences of AD performance and ARGs fates. WW-derived MPs with longer aging period and higher aging degree would release toxics and decrease the activities of microorganisms, resulting in the negative impact on AD performance. However, AD-introduced MPs with short aging period exhibited marginal impacts on AD performance. Furthermore, the co-occurrent network analysis suggested that the variations of potential host bacteria induced by MPs with different types and aging degree attributed to the dissemination of ARGs. Distinctively from most previous studies, the MPs with different sizes did not show remarkable effects on AD performance and ARGs fates. Our findings benefited the understanding of realistic environmental behavior and effect of MPs with different sources.
Assuntos
Metano , Microplásticos , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Microplásticos/toxicidade , Eliminação de Resíduos Líquidos , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.