RESUMO
COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Pandemias/prevenção & controle , Pneumonia Viral/patologia , Pneumonia Viral/prevenção & controle , Vacinação , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , SARS-CoV-2 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Organismos Livres de Patógenos Específicos , Transdução Genética , Células Vero , Carga Viral , Replicação ViralRESUMO
Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.
Assuntos
COVID-19 , Resfriado Comum , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animais , Camundongos , Idoso , SARS-CoV-2 , Proteção CruzadaRESUMO
The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.
Assuntos
COVID-19 , Ácidos Nucleicos Livres , RNA/sangue , COVID-19/sangue , COVID-19/genética , Ácidos Nucleicos Livres/sangue , Síndrome da Liberação de Citocina , Humanos , SARS-CoV-2RESUMO
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.
Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Anticorpos de Domínio Único/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Animais , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , COVID-19/diagnóstico , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Epitopos/imunologiaRESUMO
Coronaviruses are pathogens of pandemic potential. Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. More than 70% of MERS-CoV-infected dromedaries are found in East, North, and West Africa, but zoonotic MERS disease is only reported from the Arabian Peninsula. We compared viral replication competence of clade A and B viruses from the Arabian Peninsula with genetically diverse clade C viruses found in East (Egypt, Kenya, and Ethiopia), North (Morocco), and West (Nigeria and Burkina Faso) Africa. Viruses from Africa had lower replication competence in ex vivo cultures of the human lung and in lungs of experimentally infected human-DPP4 (hDPP4) knockin mice. We used lentivirus pseudotypes expressing MERS-CoV spike from Saudi Arabian clade A prototype strain (EMC) or African clade C1.1 viruses and demonstrated that clade C1.1 spike was associated with reduced virus entry into the respiratory epithelial cell line Calu-3. Isogenic EMC viruses with spike protein from EMC or clade C1.1 generated by reverse genetics showed that the clade C1.1 spike was associated with reduced virus replication competence in Calu-3 cells in vitro, in ex vivo human bronchus, and in lungs of hDPP4 knockin mice in vivo. These findings may explain why zoonotic MERS disease has not been reported from Africa so far, despite exposure to and infection with MERS-CoV.
Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/virologia , África , Animais , Arábia , Linhagem Celular , Dipeptidil Peptidase 4/metabolismo , Técnicas de Introdução de Genes , Humanos , Cinética , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fenótipo , Filogenia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/fisiologiaRESUMO
Accurate and reliable pose estimation of boom-type roadheaders is the key to the forming quality of the tunneling face in coal mines, which is of great importance to improve tunneling efficiency and ensure the safety of coal mine production. The multi-laser-beam target-based visual localization method is an effective way to realize accurate and reliable pose estimation of a roadheader body. However, the complex background interference in coal mines brings great challenges to the stable and accurate segmentation and extraction of laser beam features, which has become the main problem faced by the long-distance visual positioning method of underground equipment. In this paper, a semantic segmentation network for underground laser beams in coal mines, RCEAU-Net, is proposed based on U-Net. The network introduces residual connections in the convolution of the encoder and decoder parts, which effectively fuses the underlying feature information and improves the gradient circulation performance of the network. At the same time, by introducing cascade multi-scale convolution in the skipping connection section, which compensates for the lack of contextual semantic information in U-Net and improves the segmentation effect of the network model on tiny laser beams at long distance. Finally, the introduction of an efficient multi-scale attention module with cross-spatial learning in the encoder enhances the feature extraction capability of the network. Furthermore, the laser beam target dataset (LBTD) is constructed based on laser beam target images collected from several coal mines, and the proposed RCEAU-Net model is then tested and verified. The experimental results show that, compared with the original U-Net, RCEAU-Net can ensure the real-time performance of laser beam segmentation while increasing the Accuracy by 0.19%, Precision by 2.53%, Recall by 22.01%, and Intersection and Union Ratio by 8.48%, which can meet the requirements of multi-laser-beam feature segmentation and extraction under complex backgrounds in coal mines, so as to further ensure the accuracy and stability of long-distance visual positioning for boom-type roadheaders and ensure the safe production in the working face.
RESUMO
Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.
Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Livres/genéticaRESUMO
Inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and excessive inflammation is the current task in the prevention and treatment of corona vireus disease 2019 (COVID-19). Here, a dual-function circular aptamer-ASO chimera (circSApt-NASO) is designed to suppress SARS-CoV-2 replication and inflammation. The chemically unmodified circSApt-NASO exhibits high serum stability by artificial cyclization. It is also demonstrated that the SApt binding to spike protein enables the chimera to be efficiently delivered into the host cells expressing ACE2 along with the infection of SARS-CoV-2. Among them, the SApt potently inhibits spike-induced inflammation. The NASO targeting to silence N genes not only display robust anti-N-induced inflammatory activity, but also achieve efficient inhibition of SARS-CoV-2 replication. Overall, benefiting from the high stability of the cyclization, antispike aptamer-dependent, and viral infection-mediate targeted delivery, the circSApt-NASO displays robust potential against authentic SARS-CoV-2 and Omicron, providing a promising specific anti-inflammatory and antiproliferative reagent for therapeutic COVID-19.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inflamação , Proliferação de CélulasRESUMO
Middle East respiratory syndrome coronavirus (MERS-CoV) is a beta coronavirus that emerged in 2012, causing severe pneumonia and renal failure. MERS-CoV encodes five accessory proteins. Some of them have been shown to interfere with host antiviral immune response. However, the roles of protein 8b in innate immunity and viral virulence was rarely studied. Here, we introduced individual MERS-CoV accessory protein genes into the genome of an attenuated murine coronavirus (Mouse hepatitis virus, MHV), respectively, and found accessory protein 8b could enhance viral replication in vivo and in vitro and increase the lethality of infected mice. RNA-seq analysis revealed that protein 8b could significantly inhibit type I interferon production (IFN-I) and innate immune response in mice infected with MHV expressing protein 8b. We also found that MERS-CoV protein 8b could initiate from multiple internal methionine sites and at least three protein variants were identified. Residues 1-23 of protein 8b was demonstrated to be responsible for increased virulence in vivo. In addition, the inhibitory effect on IFN-I of protein 8b might not contribute to its virulence enhancement as aa1-23 deletion did not affect IFN-I production in vitro and in vivo. Next, we also found that protein 8b was localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, which was disrupted by C-terminal region aa 88-112 deletion. This study will provide new insight into the pathogenesis of MERS-CoV infection. IMPORTANCE Multiple coronaviruses (CoV) cause severe respiratory infections and become global public health threats such as SARS-CoV, MERS-CoV, and SARS-CoV-2. Each coronavirus contains different numbers of accessory proteins which show high variability among different CoVs. Accessory proteins are demonstrated to play essential roles in pathogenesis of CoVs. MERS-CoV contains 5 accessory proteins (protein 3, 4a, 4b, 5, 8b), and deletion of all four accessory proteins (protein 3, 4a, 4b, 5), significantly affects MERS-CoV replication and pathogenesis. However, whether ORF8b also regulates MERS-CoV infection is unknown. Here, we constructed mouse hepatitis virus (MHV) recombinant virus expressing MERS-CoV protein 8b and demonstrated protein 8b could significantly enhance the virulence of MHV, which is mediated by N-terminal domain of protein 8b. This study will shed light on the understanding of pathogenesis of MERS-CoV infection.
Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Vírus da Hepatite Murina/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais Reguladoras e Acessórias/genética , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Camundongos , Mortalidade , Proteínas Virais Reguladoras e Acessórias/química , Tropismo Viral , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Twelve kinds of 8-hydroxyquinoline derivatives were synthesized and characterized. The weight loss method was used to evaluate their inhibition efficiencies (IEs) in a 1.0 M HCl solution at 333 K. The results showed that the alkyl chain length, heteroatoms (S, N, and O), and number of benzene rings significantly affect the IE. Herein, the IE of 5-[(dodecylthio)methyl]-8-quinolinol reached 98.71%. Meanwhile, the potentiodynamic polarization results indicated that all 8-hydroxyquinoline derivatives were mixed-type inhibitors. Electrochemical impedance spectroscopy results revealed that 8-hydroxyquinoline derivatives can increase polarization resistance, supporting their adsorption on the N80 steel surface. Moreover, according to density functional theory (DFT), the frontier orbital distribution and quantum chemical parameters (EHOMO, ELUMO, dipole moment µ, etc.) were calculated, and the results confirmed that the substituents of protonated 8-hydroxyquinoline derivatives significantly influenced the frontier orbital distribution. Molecular dynamics simulation illustrated that all protonated 8-hydroxyquinoline derivatives were adsorbed parallel to the Fe(110) surface, and the interaction energy (Eint) evidenced that the molecular size would affect their strength of adsorption on the Fe(110) surface. The linear and nonlinear quantitative structure-activity relationship models were established by linear regression (LR) methods and BP neural networks (NN), respectively. The LR model was established by using Eint and µ, and the coefficient of determination (R2) was 0.934. In addition, the nonlinear NN model was obtained according to IE and all parameters (DFT parameters and Eint). Then, the two calculation inhibition efficiencies (IEcal) were obtained from the LR and NN models, and the R2 values of the linear correlation between the IEcal and the experimental IE were 0.940 and 0.951, respectively. In addition, the IE of the tested inhibitor was 51.86% and the IEcal values predicted by the LR and NN models were 52.68% and 53.06%, respectively. Our results demonstrate that both the LR and NN models have good fits and predictive ability.
RESUMO
Stomach adenocarcinoma (STAD) is one of the most commonly diagnosed cancers. This study analyzed the subtypes and characteristics of STAD subtypes by analyzing hypoxia pathway-related lncRNAs. Potential hub lncRNAs were found and a prognostic model was constructed. Expression profiling data and clinical information of STAD were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Metabolic pathway scores were calculated using single-sample gene set enrichment analysis (ssGSEA) method. Tumor immune microenvironment scores of the samples were assessed by ESTIMATE, MCP-counter, and ssGSEA. Functional analysis of lncRNAs, construction of risk models, and drug sensitivity analysis were performed. Pathway analysis revealed that the hypoxia pathway was a prognostic risk factor. Molecular subtypes were developed based on the hypoxia score-related lncRNAs. Three molecular subtypes (C1, C2, and C3) for gastric STAD were determined. The worst prognosis was in the C2, which was also characterized by the maximum hypoxia pathway-related scores and the maximum immune score. A majority of the immune checkpoints and chemokines were high-expressed in the C2 subtype. Mutations in the C2 subtype were significantly lower than the C1 and C3 subtypes. The subtypes differed in terms of functional and metabolic pathways. Eight hub indicator lncRNAs (MSC-AS1, AC037198.1, LINC00968, AL139393.3, LINC02544, BOLA3-AS1, MIR1915HG, and AC107021.2) capable of predicting patient prognosis were identified. Three hypoxia lncRNA-related molecular subtypes characterized by different prognostic and immune conditions were identified. The results maybe can provide a theoretical basis to improve the clinical diagnosis and treatment of STAD.
Assuntos
Adenocarcinoma , RNA Longo não Codificante , Neoplasias Gástricas , Adenocarcinoma/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS: We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS: We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS: A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.
Assuntos
COVID-19 , Humanos , Camundongos , Animais , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Pandemias/prevenção & controle , Anticorpos Antivirais , Pulmão , Anticorpos NeutralizantesRESUMO
Alexandriumpacificum is a typical toxic bloom-forming dinoflagellate, causing serious damage to aquatic ecosystems and human health. Many bacteria have been isolated, having algicidal effects on harmful algal species, while few algicidal bacteria have been found to be able to lyse A. pacificum. Herein, an algicidal bacterium, Shewanella Y1, with algicidal activity to the toxic dinoflagellate A. pacificum, was isolated from Jiaozhou Bay, China, and the physiological responses to oxidative stress in A. pacificum were further investigated to elucidate the mechanism involved in Shewanella Y1. Y1 exhibited a significant algicidal effect (86.64 ± 5.04% at 24 h) and algicidal activity in an indirect manner. The significant declines of the maximal photosynthetic efficiency (Fv/Fm), initial slope of the light limited region (alpha), and maximum relative photosynthetic electron transfer rate (rETRmax) indicated that the Y1 filtrate inhibited photosynthetic activities of A. pacificum. Impaired photosynthesis induced the overproduction of reactive oxygen species (ROS) and caused strong oxidative damage in A. pacificum, ultimately inducing cell death. These findings provide a better understanding of the biological basis of complex algicidal bacterium-harmful algae interactions, providing a potential source of bacterial agent to control harmful algal blooms.
Assuntos
Dinoflagellida , Shewanella , Ecossistema , Proliferação Nociva de Algas , Humanos , FotossínteseRESUMO
Understanding the immune response to Middle East respiratory syndrome coronavirus (MERS-CoV) is crucial for disease prevention and vaccine development. We studied the antibody responses in 48 human MERS-CoV infection survivors who had variable disease severity in Saudi Arabia. MERS-CoV-specific neutralizing antibodies were detected for 6 years postinfection.
Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Formação de Anticorpos , Camelus , Infecções por Coronavirus/epidemiologia , Humanos , Arábia Saudita/epidemiologiaRESUMO
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory disease in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. We isolated the clade B MERS-CoV ChinaGD01 strain from a patient infected during the South Korean MERS outbreak in 2015 and compared the phylogenetics and pathogenicity of MERS-CoV EMC/2012 (clade A) and ChinaGD01 (clade B) in vitro and in vivo Genome alignment analysis showed that most clade-specific mutations occurred in the orf1ab gene, including mutations that were predicted to be potential glycosylation sites. Minor differences in viral growth but no significant differences in plaque size or sensitivity to beta interferon (IFN-ß) were detected between these two viruses in vitro ChinaGD01 virus infection induced more weight loss and inflammatory cytokine production in human DPP4-transduced mice. Viral titers were higher in the lungs of ChinaGD01-infected mice than with EMC/2012 infection. Decreased virus-specific CD4+ and CD8+ T cell numbers were detected in the lungs of ChinaGD01-infected mice. In conclusion, MERS-CoV evolution induced changes to reshape its pathogenicity and virulence in vitro and in vivo and to evade adaptive immune response to hinder viral clearance.IMPORTANCE MERS-CoV is an important emerging pathogen and causes severe respiratory infection in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. In this study, we showed that a clade B virus ChinaGD01 strain caused more severe disease in mice, with delayed viral clearance, increased inflammatory cytokines, and decreased antiviral T cell responses, than the early clade A virus EMC/2012. Given the differences in pathogenicity of different clades of MERS-CoV, periodic assessment of currently circulating MERS-CoV is needed to monitor potential severity of zoonotic disease.
Assuntos
Infecções por Coronavirus/virologia , Genótipo , Interações Hospedeiro-Patógeno , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Adulto , Animais , Modelos Animais de Doenças , Genoma Viral , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/farmacologia , Masculino , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Filogenia , RNA Viral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Virulência , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Sequenciamento Completo do GenomaRESUMO
Studying the genetic differentiation in a unique geographical area contributes to understanding the process of speciation. Here, we explore the spatial genetic structure and underlying formation mechanism of two congeneric small mammal species (Apodemus draco and A. chevrieri), which are mainly distributed in the mountains surrounding the lowland Sichuan Basin, southwest China. We applied a set of comparative phylogeographical analyses to determine their genetic diversification patterns, combining mitochondrial (Cytb and COI) and nuclear (microsatellite loci) markers, with dense sampling throughout the range (411 A. draco from 21 sites and 191 A. chevrieri from 22 sites). Moreover, we performed three complementary statistical methods to investigate the correlation between genotype and geographical and environmental components, and predicted the potential suitable distributional range under the present and historical climate conditions. Our results suggest that both species have experienced allopatric differentiation and admixture in historical periods, resulting in a ring-shape diversification, under the barrier effect of the Sichuan Basin. We infer that the tectonic events of the Qinghai-Tibetan Plateau and climatic oscillations during the Quaternary played an important role on the genetic divergence of the two species by providing environmental heterogeneity and geographical variation. Our study reveals a case of two sympatric small mammals following a ring-shaped diversification pattern and provides insight into the process of differentiation.
Assuntos
Variação Genética , Mamíferos , Animais , China , DNA Mitocondrial/genética , Mamíferos/genética , Filogenia , FilogeografiaRESUMO
Metasurfaces offer a unique platform to realize flat lenses, reducing the size and complexity of imaging systems and thus enabling new imaging modalities. In this paper, we designed a bilayer helicity-dependent continuous varifocal dielectric metalens in the near-infrared range. The first layer consists of silicon nanopillars and functions as a half-wave plate, providing the helicity-dependent metasurface by combining propagation phase and geometric phase. The second layer consists of phase-change material Sb2S3 nanopillars and provides tunable propagation phases. Upon excitation with the circularly polarized waves possessing different helicities, the metalens can generate helicity-dependent longitudinal focal spots. Under the excitation of linear polarized light, the helicity-dependent dual foci are generated. The focal lengths in this metalens can be continuously tuned by the crystallization fraction of Sb2S3. The zoom range is achieved from 32.5â µm to 37.2â µm for right circularly polarized waves and from 50.5â µm to 60.9â µm for left circularly polarized waves. The simulated focusing efficiencies are above 75% and 87% for the circularly and linearly polarized waves, respectively. The proposed metalens has potential applications in miniaturized devices, including compact optical communication systems, imaging, and medical devices.
RESUMO
Fully reconfigurable optical filters are indispensable building blocks to realize reconfigurable photonic networks/systems. This paper proposes a reconfigurable and dual-polarization optical filter based on a subwavelength grating waveguide operating in the Bragg reflection mechanism and combined with a low-loss phase change material Ge2Sb2Se4Te1. Numerical simulations indicate that, for TE(TM) polarization, the presented Bragg grating filter offers up to 20 nm (17 nm) redshift with amplitude modulation of 6 dB (0.15 dB) at 1550 nm. Using the effective medium theory, we obtained the six-level crystallization performance of the optical filter. The proposed optical filter has potential applications in wavelength-division-multiplexing systems, optical signal processing, and optical communications.
RESUMO
Antigen receptor assembly in lymphocytes involves stringently-regulated coordination of specific DNA rearrangement events across several large chromosomal domains. Previous studies indicate that transcription factors such as paired box 5 (PAX5), Yin Yang 1 (YY1), and CCCTC-binding factor (CTCF) play a role in regulating the accessibility of the antigen receptor loci to the V(D)J recombinase, which is required for these rearrangements. To gain clues about the role of CTCF binding at the murine immunoglobulin heavy chain (IgH) locus, we utilized a computational approach that identified 144 putative CTCF-binding sites within this locus. We found that these CTCF sites share a consensus motif distinct from other CTCF sites in the mouse genome. Additionally, we could divide these CTCF sites into three categories: intergenic sites remote from any coding element, upstream sites present within 8 kb of the VH-leader exon, and recombination signal sequence (RSS)-associated sites characteristically located at a fixed distance (â¼18 bp) downstream of the RSS. We noted that the intergenic and upstream sites are located in the distal portion of the VH locus, whereas the RSS-associated sites are located in the DH-proximal region. Computational analysis indicated that the prevalence of CTCF-binding sites at the IgH locus is evolutionarily conserved. In all species analyzed, these sites exhibit a striking strand-orientation bias, with >98% of the murine sites being present in one orientation with respect to VH gene transcription. Electrophoretic mobility shift and enhancer-blocking assays and ChIP-chip analysis confirmed CTCF binding to these sites both in vitro and in vivo.
Assuntos
Fator de Ligação a CCCTC/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Imunidade Adaptativa/genética , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Rearranjo Gênico , Humanos , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina , Células K562 , Camundongos , Camundongos Knockout , Células NIH 3T3 , Motivos de Nucleotídeos , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismoRESUMO
The outbreak of the novel coronavirus disease (COVID-19) quickly spread all over China and to more than 20 other countries. Although the virus (severe acute respiratory syndrome coronavirus [SARS-Cov-2]) nucleic acid real-time polymerase chain reaction (PCR) test has become the standard method for diagnosis of SARS-CoV-2 infection, these real-time PCR test kits have many limitations. In addition, high false-negative rates were reported. There is an urgent need for an accurate and rapid test method to quickly identify a large number of infected patients and asymptomatic carriers to prevent virus transmission and assure timely treatment of patients. We have developed a rapid and simple point-of-care lateral flow immunoassay that can detect immunoglobulin M (IgM) and IgG antibodies simultaneously against SARS-CoV-2 virus in human blood within 15 minutes which can detect patients at different infection stages. With this test kit, we carried out clinical studies to validate its clinical efficacy uses. The clinical detection sensitivity and specificity of this test were measured using blood samples collected from 397 PCR confirmed COVID-19 patients and 128 negative patients at eight different clinical sites. The overall testing sensitivity was 88.66% and specificity was 90.63%. In addition, we evaluated clinical diagnosis results obtained from different types of venous and fingerstick blood samples. The results indicated great detection consistency among samples from fingerstick blood, serum and plasma of venous blood. The IgM-IgG combined assay has better utility and sensitivity compared with a single IgM or IgG test. It can be used for the rapid screening of SARS-CoV-2 carriers, symptomatic or asymptomatic, in hospitals, clinics, and test laboratories.