Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 21(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37888477

RESUMO

It is evident that zinc supplementation is essential for maintaining good health and preventing disease. In this study, a novel oyster peptide-zinc complex with an average molecular weight of 500 Da was prepared from oyster meat and purified using ultrafiltration, ultrasound, a programmed cooling procedure, chelating, and dialysis. The optimal chelating process parameters obtained through a response surface methodology optimization design are a peptide/zinc ratio of 15, pH of 6.53, reaction time of 80 min, and peptide concentration of 0.06 g/mL. Then, the structure of a peptide-zinc complex (named COP2-Zn) was investigated using the UV and infrared spectrums. The results showed that the maximum absorption peak was redshifted from 224.5 nm to 228.3 nm and the main difference of the absorption peaks was 1396.4 cm-1. The cytotoxicity and antiproliferative effects of COP2-Zn were evaluated. The results showed that COP2-Zn had a better antiproliferative effect than the unchelated peptide against HepG2 cells. A DNA flow cytometric analysis showed that COP2-Zn induced S-phase arrest in HepG2 cells in a dose-dependent manner. Additionally, the flow cytometer indicated that COP2-Zn significantly induced HepG2 cell apoptosis.


Assuntos
Ostreidae , Zinco , Animais , Zinco/farmacologia , Zinco/química , Quelantes/química , Peptídeos/farmacologia , Peptídeos/química
2.
Huan Jing Ke Xue ; 45(1): 115-122, 2024 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-38216463

RESUMO

Ships are important sources of carbon dioxide (CO2) emissions in Guangdong Province. The study of historical evolutions, drivers, and projected pathways of CO2 emissions can provide scientific support for the development of carbon peaking and carbon neutral strategies in Guangdong Province. The emission factor method, log-average index (LMDI) method, and scenario analysis method were adopted to estimate CO2 emissions, identify the drivers, and explore the mitigation potential from ships in Guangdong Province, separately. The results showed that:① CO2 emissions from ships in Guangdong Province increased from 3.319 4 million tons to 6.392 9 million tons from 2006 to 2020, with dry bulk carriers and container ships being the main ship types causing the increase in emissions. ② The positive drivers of CO2 emissions from ships in Guangdong Province from 2006 to 2020 were transport intensity (51%) and economic factors (49%), and the negative drivers were energy intensity (93%) and cargo class structure (7%). ③ Carbon peaking would not be reached by 2030 if Guangdong Province maintains the current policy (baseline scenario) for ship transportation. ④ Simultaneous optimization of the energy structure and promotion of the energy intensity (energy-efficient and low-carbon scenario) had a 56.51% potential to reduce CO2 emissions from ships compared to the baseline scenario. This can provide scientific support for Guangdong Province to develop a carbon peaking and carbon neutral control strategy for the shipping industry.

3.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569972

RESUMO

To reduce the structural deterioration of mass concrete structures from temperature cracks, and lower energy consumption caused by the traditional mass concrete hydration heat cooling process, this paper reports the preparation of concrete temperature-controlled phase change aggregate (PCA) by a vacuum compaction method using light and high-strength black ceramite and No. 58 fully refined paraffin wax as phase change material (PCM), and the encapsulation technology of the aggregate by using superfine cement and epoxy resin. Further, through laboratory tests, the cylinder compressive strength, thermal stability and mixing breakage rate of the encapsulated PCA were tested, and the differences in mechanical properties such as compressive strength, flexural strength and splitting tensile strength between phase change aggregate concrete (PCAC) and ordinary concrete were studied. A test method was designed to test the heat storage effect of PCA, and the temperature control effect of PCAC was analyzed based on the law of conservation of energy. The research conclusions are as follows: (1) Both superfine cement and epoxy resin shells increase the strength of the aggregate, with the epoxy resin increasing it more than the superfine cement. The thermal stabilization of the PCA is good after encapsulation of superfine cement and epoxy resin. However, PCA encapsulated in superfine cement is more easily crushed than that encapsulated in epoxy resin. (2) Under the condition of water bath heating and semi-insulation, when the water bath temperature reaches 85 °C, the temperature difference between the PCA and the common stone aggregate can be up to 6 °C. Based on the law of energy conservation, the test results will be converted to mass concrete with the same volume of aggregate mixture;, the difference of PCAC and ordinary concrete temperature can be up to 10 °C, so the temperature control effect is significant. (3) The mechanical properties of PCAC with 100% aggregate replacement rate compared to ordinary concrete are reduced to varying degrees, and the performance decline of the epoxy-encapsulated PCA is smaller than that encapsulated with superfine cement; in an actual project, it is possible to improve the concrete grade to make up for this defect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA