Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(17): e111799, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35844093

RESUMO

Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca[i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease in FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1 produced a similar bimodal pattern of FAK responses. Further investigations revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.


Assuntos
Cálcio , Canais Iônicos , Cálcio/metabolismo , Sinalização do Cálcio , Canais Iônicos/genética , Canais Iônicos/metabolismo , Ligantes , Mecanotransdução Celular/fisiologia
2.
Mol Ther ; 31(1): 35-47, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36045585

RESUMO

CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Camundongos , Antígenos CD28/genética , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/antagonistas & inibidores , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia
3.
Nat Mater ; 21(10): 1191-1199, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927431

RESUMO

Cell reprogramming has wide applications in tissue regeneration, disease modelling and personalized medicine. In addition to biochemical cues, mechanical forces also contribute to the modulation of the epigenetic state and a variety of cell functions through distinct mechanisms that are not fully understood. Here we show that millisecond deformation of the cell nucleus caused by confinement into microfluidic channels results in wrinkling and transient disassembly of the nuclear lamina, local detachment of lamina-associated domains in chromatin and a decrease of histone methylation (histone H3 lysine 9 trimethylation) and DNA methylation. These global changes in chromatin at the early stage of cell reprogramming boost the conversion of fibroblasts into neurons and can be partially reproduced by inhibition of histone H3 lysine 9 and DNA methylation. This mechanopriming approach also triggers macrophage reprogramming into neurons and fibroblast conversion into induced pluripotent stem cells, being thus a promising mechanically based epigenetic state modulation method for cell engineering.


Assuntos
Reprogramação Celular , Histonas , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo
4.
J Org Chem ; 88(19): 13544-13552, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37698421

RESUMO

An Rh(III)-catalyzed one-pot synthesis of 5H-isochromeno[3,4-c]isoquinolines from readily available 4-diazoisochroman-3-imines and (2-formylphenyl)boronic acids is reported. The cascade annulation involves a Rh(III)-catalyzed cross-coupling and an intramolecular nucleophilic addition-elimination process. A series of biologically important 5H-isochromeno[3,4-c]isoquinolines were obtained in good to excellent yields. The method can be extended to synthesize 7H-isochromeno[3,4-b]thieno[3,2-d]pyridines and 7H-isochromeno[3,4-b]thieno[2,3-d]pyridines from the corresponding heteroaryl boronic acids.

5.
Proc Natl Acad Sci U S A ; 117(20): 10832-10838, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32358190

RESUMO

While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context of myofibroblast-fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast-fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 µm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.


Assuntos
Fibroblastos/metabolismo , Fibrose/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais/fisiologia , Animais , Receptor com Domínio Discoidina 2/metabolismo , Humanos , Integrinas , Canais Iônicos/metabolismo , Mecanotransdução Celular
6.
Acta Neuropathol ; 144(3): 521-536, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35857122

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Adesões Focais/metabolismo , Adesões Focais/patologia , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Camundongos , Neuritos/patologia , Neurônios/patologia
7.
Org Biomol Chem ; 20(43): 8484-8488, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36263688

RESUMO

A Rh(II)-catalyzed (3 + 2) annulation of pyridines with 4-diazoisochroman-3-imines leading to 5H-isochromeno[3,4-b]indolizines is presented. This methodology provides straightforward access to a wide variety of substituted 5H-isochromeno[3,4-b]indolizines with moderate to good yields (up to 84%) and complete regioselectivity.


Assuntos
Indolizinas , Piridinas , Iminas , Catálise , Ciclização
8.
FASEB J ; 34(10): 13586-13596, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856783

RESUMO

Endothelial microparticles (EMPs) are involved in various cardiovascular pathologies and play remarkable roles in communication between endothelial cells (ECs), which are constantly exposed to mechanical cyclic stretch (CS) following blood pressure. However, the roles of EMPs induced by CS in EC homeostasis are still unclear. Both fluorescence resonance energy transfer (FRET) and western blotting revealed the activation of Src in ECs was significantly increased by 5% CS-induced EMPs. Furthermore, proteomic analysis revealed that the contents were obvious different in the EMPs between 5%- and 15%-group. Based on the bioinformatic analysis, CD151 on EMPs was predicted to activate Src, which was further confirmed by both FRET and western blotting. Moreover, the expression of CD151 on EMPs was significantly increased by 5% CS and involved in the binding of EMPs to ECs. EC apoptosis, which was significantly decreased by 5% CS-derived EMPs, showed obvious increase after pretreatment with Src inhibitor in target ECs. Our present research suggests that mechanical stretch changes the components of EMPs, which in turn modulates EC apoptosis by Src activation. CD151 expressed on CS-induced EMPs may play important roles in EC communication and homeostasis.


Assuntos
Apoptose , Micropartículas Derivadas de Células/fisiologia , Células Endoteliais , Endotélio Vascular , Quinases da Família src/metabolismo , Animais , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ratos , Estresse Mecânico , Tetraspanina 24/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-33519290

RESUMO

Liquid-liquid phase separation is increasingly recognized as a phenomenon that affects cell behavior. For example, phase separation of transcription factors and coactivators has been shown to drive efficient transcription. For many years, phase separation of intracellular components has been observed; however, only recently have researchers been able to garner functional significance from such events. Inspired from recent literature that describes phase separation of chromatin in a histone-dependent manner, we review the role and effect of phase separation and histone epigenetics in regulating the genome and discuss how these phenomena can be leveraged to control cell behavior.

10.
Proc Natl Acad Sci U S A ; 115(5): 992-997, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29343642

RESUMO

While cell-based immunotherapy, especially chimeric antigen receptor (CAR)-expressing T cells, is becoming a paradigm-shifting therapeutic approach for cancer treatment, there is a lack of general methods to remotely and noninvasively regulate genetics in live mammalian cells and animals for cancer immunotherapy within confined local tissue space. To address this limitation, we have identified a mechanically sensitive Piezo1 ion channel (mechanosensor) that is activatable by ultrasound stimulation and integrated it with engineered genetic circuits (genetic transducer) in live HEK293T cells to convert the ultrasound-activated Piezo1 into transcriptional activities. We have further engineered the Jurkat T-cell line and primary T cells (peripheral blood mononuclear cells) to remotely sense the ultrasound wave and transduce it into transcriptional activation for the CAR expression to recognize and eradicate target tumor cells. This approach is modular and can be extended for remote-controlled activation of different cell types with high spatiotemporal precision for therapeutic applications.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Animais , Fenômenos Biomecânicos , Sinalização do Cálcio , Genes Sintéticos , Engenharia Genética , Técnicas Genéticas , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/imunologia , Células Jurkat , Mecanotransdução Celular/genética , Mecanotransdução Celular/imunologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Biologia Sintética , Linfócitos T/imunologia , Ultrassom
11.
Proc Natl Acad Sci U S A ; 115(50): E11681-E11690, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478057

RESUMO

The dramatic reorganization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. We have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy transfer (FRET). These biosensors were incorporated into nucleosomes to visualize histone H3 Lys-9 trimethylation (H3K9me3) and histone H3 Ser-10 phosphorylation (H3S10p) simultaneously in the same live cell. We observed an anticorrelated coupling in time between H3K9me3 and H3S10p in a single live cell during mitosis. A transient increase of H3S10p during mitosis is accompanied by a decrease of H3K9me3 that recovers before the restoration of H3S10p upon mitotic exit. We further showed that H3S10p is causatively critical for the decrease of H3K9me3 and the consequent reduction of heterochromatin structure, leading to the subsequent global chromatin reorganization and nuclear envelope dissolution as a cell enters mitosis. These results suggest a tight coupling of H3S10p and H3K9me3 dynamics in the regulation of heterochromatin dissolution before a global chromatin reorganization during mitosis.


Assuntos
Técnicas Biossensoriais/métodos , Montagem e Desmontagem da Cromatina , Código das Histonas , Proteínas de Bactérias , Montagem e Desmontagem da Cromatina/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde , Células HEK293 , Heterocromatina/genética , Heterocromatina/metabolismo , Código das Histonas/genética , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Luminescentes , Mitose , Modelos Biológicos , Análise de Célula Única/métodos
12.
BMC Cancer ; 20(1): 145, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087696

RESUMO

BACKGROUND: Aberrant JAK/STAT activation has been detected in many types of human cancers. The role of JAK/STAT activation in cancer has been mostly attributed to direct transcriptional regulation of target genes by phosphorylated STAT (pSTAT), while the unphosphorylated STAT (uSTAT) is believed to be dormant and reside in the cytoplasm. However, several studies have shown that uSTATs can be found in the nucleus. In addition, it has been shown that tissue-specific loss of STAT3 or STAT5 in mice promotes cancer growth in certain tissues, and thus these STAT proteins can act as tumor suppressors. However, no unifying mechanism has been shown for the tumor suppressor function of STATs to date. We have previously demonstrated a non-canonical mode of JAK/STAT signaling for Drosophila STAT and human STAT5A, where a fraction of uSTAT is in the nucleus and associated with Heterochromatin Protein 1 (HP1); STAT activation (by phosphorylation) causes its dispersal, leading to HP1 delocalization and heterochromatin loss. METHODS: We used a combination of imaging, cell biological assays, and mouse xenografts to investigate the role of STAT3 in lung cancer development. RESULTS: We found that uSTAT3 has a function in promoting heterochromatin formation in lung cancer cells, suppressing cell proliferation in vitro, and suppressing tumor growth in mouse xenografts. CONCLUSIONS: Thus, uSTAT3 possesses noncanonical function in promoting heterochromatin formation, and the tumor suppressor function of STAT3 is likely attributable to the heterochromatin-promoting activity of uSTAT3 in the non-canonical JAK/STAT pathway.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Genes Supressores de Tumor , Heterocromatina/metabolismo , Neoplasias Pulmonares/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Homólogo 5 da Proteína Cromobox , Feminino , Regulação da Expressão Gênica , Heterocromatina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Fosforilação , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sensors (Basel) ; 20(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899249

RESUMO

Fluorescence resonance energy transfer (FRET)-based biosensors have advanced live cell imaging by dynamically visualizing molecular events with high temporal resolution. FRET-based biosensors with spectrally distinct fluorophore pairs provide clear contrast between cells during dual FRET live cell imaging. Here, we have developed a new FRET-based Ca2+ biosensor using EGFP and FusionRed fluorophores (FRET-GFPRed). Using different filter settings, the developed biosensor can be differentiated from a typical FRET-based Ca2+ biosensor with ECFP and YPet (YC3.6 FRET Ca2+ biosensor, FRET-CFPYPet). A high-frequency ultrasound (HFU) with a carrier frequency of 150 MHz can target a subcellular region due to its tight focus smaller than 10 µm. Therefore, HFU offers a new single cell stimulations approach for FRET live cell imaging with precise spatial resolution and repeated stimulation for longitudinal studies. Furthermore, the single cell level intracellular delivery of a desired FRET-based biosensor into target cells using HFU enables us to perform dual FRET imaging of a cell pair. We show that a cell pair is defined by sequential intracellular delivery of the developed FRET-GFPRed and FRET-CFPYPet into two target cells using HFU. We demonstrate that a FRET-GFPRed exhibits consistent 10-15% FRET response under typical ionomycin stimulation as well as under a new stimulation strategy with HFU.


Assuntos
Técnicas Biossensoriais , Cálcio/análise , Transferência Ressonante de Energia de Fluorescência , Ultrassonografia , Células Cultivadas , Corantes Fluorescentes , Humanos , Ionomicina , Análise de Célula Única
14.
J Mol Cell Cardiol ; 128: 11-24, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659837

RESUMO

Macrophage-mediated inflammatory responses occur throughout all stages of atherosclerosis. DNA methylation is one of the critical epigenetic mechanisms and is associated with the development of atherosclerosis. The underlying mechanism of epigenetic regulation of macrophage inflammation (M1 activation) remains unclear. Here we aim to study the role of DNA methyltransferase 1 (DNMT1) in modulating macrophage inflammation and atherosclerosis. DNMT1 expression is up-regulated in THP-1-derived macrophages upon treatment with lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Overexpression of DNMT1 promotes the LPS- and IFN-γ-induced M1 activation whereas inhibition of DNMT1 attenuates it. Consistently, DNMT1 expression is elevated in macrophages in atherosclerotic plaques from human and mouse specimens; compared with the Dnmt1wild-type, myeloid Dnmt1 deficiency in mice in an Apolipoprotein E (ApoE) knockout background or receiving AAV-PSCK9 injection and carotid partial ligation results in ameliorated atheroma formation and suppressed plaque inflammation. The promoter regions of atheroprotective Krüppel-like factor 4 (KLF4) are hypermethylated in M1- activated macrophages. DNMT1 down-regulates the expression of KLF4, probably through catalyzing DNA methylation of the promoter regions of KLF4. Gain- and loss-of function study of KLF4 indicates that the DNMT1-mediated macrophage M1 activation is dependent on KLF4. Our data demonstrate a proatherogenic role for DNMT1 as a defining factor in macrophage inflammation both in vitro and in vivo. DNMT1 promotes macrophage M1 activation by suppressing KLF4 expression. Thus macrophage-specific DNMT1 inhibition may provide an attractive therapeutic potential to prevent or reduce atherosclerosis.


Assuntos
Aterosclerose/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Inflamação/genética , Fatores de Transcrição Kruppel-Like/genética , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , Interferon gama/genética , Fator 4 Semelhante a Kruppel , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mutação , Regiões Promotoras Genéticas/genética
15.
Proc Natl Acad Sci U S A ; 113(19): 5293-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114541

RESUMO

Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs.


Assuntos
Proliferação de Células/fisiologia , Lamina Tipo A/metabolismo , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/fisiologia , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Células Cultivadas , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/citologia , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Resistência à Tração/fisiologia
16.
J Cell Biochem ; 119(10): 8260-8270, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29943847

RESUMO

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is closely related to hyperplasia in hypertension. Our previous study suggested that adrenocorticotropic hormone (ACTH) is mechano-responsive and may regulate VSMC proliferation. However, the molecular mechanism of VSMC abnormal proliferation induced by conditions of high cyclic strain, especially the role of ACTH in this process, is unclear. Our results revealed that ACTH and its specific receptor melanocortin receptor type 2 (MC2R) were highly expressed in hypertensive rat models. Furthermore, it was demonstrated that the expression of ACTH and MC2R was up-regulated when exposed to high cyclic strain in vitro, accompanied by abnormal proliferation of VSMCs. Next, it was proved that ACTH-dependent cell proliferation was related to the phosphorylation of extracellular regulated protein kinases (ERK) and signal transducer and activator of transcription 3 (STAT3). The study also found that ACTH could promote dimerization and glycosylation of melanocortin 2 receptor accessory protein (MRAP), which had a significant effect on MC2R membrane localization and signal activation. When VSMCs were treated with PD98059, a mitogen-activated protein kinase (MAP kinase) cascade antagonist, it was determined that phosphorylation of STAT3 at Ser727 was dependent on ERK phosphorylation. In summary, these data demonstrated that the abnormal proliferation of VSMCs induced by conditions of high cyclic strain is in part attributed to ACTH and its receptor MC2R. Identifying the mechanism of ACTH-dependent proliferation of VSMCs may help to provide new therapeutic targets for hypertension.


Assuntos
Hormônio Adrenocorticotrópico/genética , Hipertensão/genética , Mecanotransdução Celular , Miócitos de Músculo Liso/metabolismo , Receptor Tipo 2 de Melanocortina/genética , Fator de Transcrição STAT3/genética , Hormônio Adrenocorticotrópico/metabolismo , Animais , Fenômenos Biomecânicos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Flavonoides/farmacologia , Regulação da Expressão Gênica , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fosforilação/efeitos dos fármacos , Gravidez , Cultura Primária de Células , Ratos , Receptor Tipo 2 de Melanocortina/metabolismo , Fator de Transcrição STAT3/metabolismo , Estresse Mecânico
17.
J Immunol ; 196(4): 1471-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746192

RESUMO

Proper T cell activation is promoted by sustained calcium signaling downstream of the TCR. However, the dynamics of calcium flux after stimulation with an APC in vivo remain to be fully understood. Previous studies focusing on T cell motility suggested that the activation of naive T cells in the lymph node occurs in distinct phases. In phase I, T cells make multiple transient contacts with dendritic cells before entering a phase II, where they exist in stable clusters with dendritic cells. It has been suggested that T cells signal during transient contacts of phase I, but this has never been shown directly. Because time-dependent loss of calcium dyes from cells hampers long-term imaging of cells in vivo after antigenic stimulation, we generated a knock-in mouse expressing a modified form of the Cameleon fluorescence resonance energy transfer reporter for intracellular calcium and examined calcium flux both in vitro and in situ. In vitro, we observed transient, oscillatory, and sustained calcium flux after contact with APC, but these behaviors were not affected by the type of APC or Ag quantity, but were, however, moderately dependent on Ag quality. In vivo, we found that during phase I, T cells exhibit weak calcium fluxes and detectable changes in cell motility. This demonstrates that naive T cells signal during phase I and support the hypothesis that accumulated calcium signals are required to signal the beginning of phase II.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Antígenos/imunologia , Técnicas Biossensoriais , Movimento Celular , Células Dendríticas/imunologia , Transferência Ressonante de Energia de Fluorescência , Camundongos
18.
Mol Ther ; 25(3): 803-815, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129959

RESUMO

Electrotransfection is a widely used method for delivering genes into cells with electric pulses. Although different hypotheses have been proposed, the mechanism of electrotransfection remains controversial. Previous studies have indicated that uptake and intracellular trafficking of plasmid DNA (pDNA) are mediated by endocytic pathways, but it is still unclear which pathways are directly involved in the delivery. To this end, the present study investigated the dependence of electrotransfection on macropinocytosis. Data from the study demonstrated that electric pulses induced cell membrane ruffling and actin cytoskeleton remodeling. Using fluorescently labeled pDNA and a macropinocytosis marker (i.e., dextran), the study showed that electrotransfected pDNA co-localized with dextran in intracellular vesicles. Furthermore, electrotransfection efficiency could be decreased significantly by reducing temperature or treatment of cells with a pharmacological inhibitor of Rac1 and could be altered by changing Rac1 activity. Taken together, the findings suggested that electrotransfection of pDNA involved Rac1-dependent macropinocytosis.


Assuntos
Eletroporação , Pinocitose , Plasmídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Endocitose , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Camundongos , Microscopia de Fluorescência , Plasmídeos/genética , Transfecção
19.
Biochim Biophys Acta ; 1853(5): 1165-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25721888

RESUMO

The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction.


Assuntos
Apoptose , Células Endoteliais/metabolismo , Lamina Tipo A/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Animais , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/ultraestrutura , Redes Reguladoras de Genes , Modelos Biológicos , Fosforilação , Interferência de RNA , Ratos , Fatores de Transcrição/metabolismo
20.
Nat Chem Biol ; 15(2): 96-97, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30617291
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA