Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(1): H255-H260, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787385

RESUMO

Accelerations and decelerations of heart rate are nonsymmetrical in the magnitude and number of beat-to-beat changes. The asymmetric features of heart rate variability are related to respiratory durations. To explore the link between respiration and heart rate asymmetry (HRA), we evaluated 14 seated, healthy young adults who breathed with nine combinations of inspiration duration (TI) and expiration duration (TE), chosen respectively from 2, 4, and 6 s. A 5-min R-R interval (RRI) time series was obtained from each study period to construct an averaged pattern waveform relative to the respiratory cycle. We observed that the time interval between inspiration onset and RRI minimum progressively lengthened as TI and TE increased. The time interval between expiration onset and RRI maximum also lengthened when TE increased but shortened when TI increased. Consequently, TI and TE had different effects on the acceleration time (AT; from RRI maximum to RRI minimum) and deceleration time (DT; from RRI minimum to RRI maximum). The percentage of AT within the respiratory cycle showed a strong correlation with traditional Guzik's (r = 0.862, P < 0.001) and Porta's (r = 0.878, P < 0.001) indexes of HRA assessed in a Poincaré plot analysis. These findings suggest that, in addition to considering the magnitude and number of beat-to-beat changes, HRA can also be assessed based on another aspect: the duration of consecutive changes. The stepwise link between the duration of heart rate change and respiratory duration provides insight into the mechanisms connecting respiration to HRA.NEW & NOTEWORTHY In healthy adults who regulated their breathing across nine combinations of inspiration and expiration durations, we used averaged pattern waveform technique to quantify the durations of heart rate acceleration and deceleration within the respiratory cycle. The percent duration of acceleration showed a strong correlation with traditional heart rate asymmetry indexes, which evaluate the magnitude and number of beat-to-beat changes. This new approach opens a window to explore the asymmetric features of heart rate variability.


Assuntos
Frequência Cardíaca , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Aceleração , Fatores de Tempo , Expiração/fisiologia , Inalação/fisiologia , Respiração , Eletrocardiografia
2.
Eur J Appl Physiol ; 124(7): 2101-2110, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421428

RESUMO

PURPOSE: Low values of heart rate deceleration capacity (DC) and heart rate asymmetry (HRA) are associated with cardiovascular risks. Slow respiration has been proven to enhance the magnitudes of these indexes, but individual inspiratory (TI) and expiratory (TE) durations were not controlled in most studies. This study aims to examine whether the effects of TI and TE on these indexes would be the same and, if not, how to adjust TI and TE to maximize the effect of slow respiration. METHODS: We evaluated 14 seated healthy young adults who randomly controlled their breathing to nine combinations of TI and TE, each chosen respectively from 2, 4, and 6 s. A 5-min R-R interval time series was obtained from each study period for further analysis. RESULTS: The magnitude of DC increased when TI or TE increased, while that of acceleration capacity (AC) remained almost unchanged by TI. We further defined a new index as 100 × DC2/(DC2 + AC2) and found it to be correlated with conventional Guzik's (r = 0.94) and Porta's (r = 0.99) indexes of HRA during different combinations of TI and TE. Increasing TI and increasing TE both enhanced the magnitudes of HRA indexes, with TI taking effect when ≤ 4 s, and TE taking effect when > 4 s. DC and HRA indexes were maximized with a TI of 4 s and a TE of 6 s. CONCLUSION: We suggest that a TI of 3-4 s with a TE of 7-6 s is an appropriate standard for slow respiration.


Assuntos
Expiração , Frequência Cardíaca , Inalação , Humanos , Masculino , Frequência Cardíaca/fisiologia , Inalação/fisiologia , Feminino , Adulto , Expiração/fisiologia , Desaceleração , Adulto Jovem
3.
J Infect Dis ; 227(6): 788-799, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36583990

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 virus-specific cytotoxic T-cell lymphocytes (vCTLs) could provide a promising modality in COVID-19 treatment. We aimed to screen, manufacture, and characterize SARS-CoV-2-vCTLs generated from convalescent COVID-19 donors using the CliniMACS Cytokine Capture System (CCS). METHODS: Donor screening was done by stimulation of convalescent COVID-19 donor peripheral blood mononuclear cells with viral peptides and identification of interferonγ (IFN-γ)+ CD4 and CD8 T cells using flow cytometry. Clinical-grade SARS-CoV-2-vCTLs were manufactured using the CliniMACS CCS. The enriched SARS-CoV-2-vCTLs were characterized by T-cell receptor sequencing, mass cytometry, and transcriptome analysis. RESULTS: Of the convalescent donor blood samples, 93% passed the screening criteria for clinical manufacture. Three validation runs resulted in enriched T cells that were 79% (standard error of the mean 21%) IFN-γ+ T cells. SARS-CoV-2-vCTLs displayed a highly diverse T-cell receptor repertoire with enhancement of both memory CD8 and CD4 T cells, especially in CD8 TEM, CD4 TCM, and CD4 TEMRA cell subsets. SARS-CoV-2-vCTLs were polyfunctional with increased gene expression in T-cell function, interleukin, pathogen defense, and tumor necrosis factor superfamily pathways. CONCLUSIONS: Highly functional SARS-CoV-2-vCTLs can be rapidly generated by direct cytokine enrichment (12 hours) from convalescent donors. CLINICAL TRIALS REGISTRATION: NCT04896606.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T Citotóxicos , Leucócitos Mononucleares , Tratamento Farmacológico da COVID-19 , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Citocinas , Interferon gama
4.
Plant J ; 112(2): 322-338, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979653

RESUMO

Soil salinity is a significant threat to global agriculture. Understanding salt exclusion mechanisms in halophyte species may be instrumental in improving salt tolerance in crops. Puccinellia tenuiflora is a typical salt-excluding halophytic grass often found in potassium-deprived saline soils. Our previous work showed that P. tenuiflora possesses stronger selectivity for K+ than for Na+ ; however, the mechanistic basis of this phenomenon remained elusive. Here, P. tenuiflora PutHKT1;5 was cloned and the functions of PutHKT1;5 and PutSOS1 were characterized using heterologous expression systems. Yeast assays showed that PutHKT1;5 possessed Na+ transporting capacity and was highly selective for Na+ over K+ . PutSOS1 was located at the plasma membrane and operated as a Na+ /K+ exchanger, with much stronger Na+ extrusion capacity than its homolog from Arabidopsis. PutHKT2;1 mediated high-affinity K+ and Na+ uptake and its expression levels were upregulated by mild salinity and K+ deprivation. Salinity-induced changes of root PutHKT1;5 and PutHKT1;4 transcript levels matched the expression pattern of root PutSOS1, which was consistent with root Na+ efflux. The transcript levels of root PutHKT2;1 and PutAKT1 were downregulated by salinity. Taken together, these findings demonstrate that the functional activity of PutHKT1;5 and PutSOS1 in P. tenuiflora roots is fine-tuned under saline conditions as well as by operation of other ion transporters/channel (PutHKT1;4, PutHKT2;1, and PutAKT1). This leads to the coordination of radial Na+ and K+ transport processes, their loading to the xylem, or Na+ retrieval and extrusion under conditions of mild salinity and/or K+ deprivation.


Assuntos
Arabidopsis , Potássio , Potássio/metabolismo , Sódio/metabolismo , Salinidade , Poaceae/genética , Poaceae/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Solo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Cytotherapy ; 25(10): 1048-1056, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37318396

RESUMO

BACKGROUND AIMS: Sufficient doses of viable CD34+ (vCD34) hematopoietic progenitor cells (HPCs) are crucial for engraftment. Additional-day apheresis collections can compensate for potential loss during cryopreservation but incur high cost and additional risk. To aid predicting such losses for clinical decision support, we developed a machine-learning model using variables obtainable on the day of collection. METHODS: In total, 370 consecutive autologous HPCs, apheresis-collected since 2014 at the Children's Hospital of Philadelphia, were retrospectively reviewed. Flow cytometry was used to assess vCD34% on fresh products and thawed quality control vials. The ratio of vCD34% thawed to fresh, which we call "post-thaw index," was used as an outcome measure, with a "poor" post-thaw index defined as <70%. HPC CD45 normalized mean fluorescence intensity (MFI) was calculated by dividing CD45 MFI of HPCs to the CD45 MFI of lymphocytes in the same sample. We trained XGBoost, k-nearest neighbor and random forest models for the prediction and calibrated the best model to minimize falsely-reassuring predictions. RESULTS: In total, 63 of 370 (17%) products had a poor post-thaw index. The best model was XGBoost, with an area under the receiver operator curve of 0.83 evaluated on an independent test data set. The most important predictor for a poor post-thaw index was the HPC CD45 normalized MFI. Transplants after 2015, based on the lower of the two vCD34% values, showed faster engraftment than older transplants, which were based on fresh vCD34% only (average 10.6 vs 11.7 days, P = 0.0006). CONCLUSIONS: Transplants taking into account post-thaw vCD34% improved engraftment time in our patients; however, it came at the cost of unnecessary multi-day collections. The results from applying our predictive algorithm retrospectively to our data suggest that more than one-third of additional-day collections could have been avoided. Our investigation also identified CD45 nMFI as a novel marker for assessing HPC health post-thaw.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Criança , Humanos , Antígenos CD34/metabolismo , Criopreservação/métodos , Congelamento , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Estudos Retrospectivos , Aprendizado de Máquina , Antígenos Comuns de Leucócito
6.
Rapid Commun Mass Spectrom ; 37(8): e9481, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36721310

RESUMO

RATIONALE: The chemical constituents of Chinese patent medicine are usually different from those of crude medicine because of specific preparation processes. Chimonanthus nitens Oliv. leaf granule is widely used for prevention against COVID-19 in China. However, no research has been reported on the chemical constituents of the granule and their variation during the preparation process. METHODS: Fragmentation patterns of reference compounds were investigated using electrospray ionization mass spectrometry, and the new gas-phase reaction was demonstrated by electronic and steric effects and calculated chemistry. Then, a strategy based on new fragmentation patterns was used to profile aromatic constituents. In addition, based on untargeted metabolomics analytical workflow, a comparison was made on the chemical constituents of the leaf and granule. RESULTS: New fragmentation patterns related to two competing reactions, ring-opening and ring-closing reactions for coumarin, have been proposed and investigated in depth. The newly established diagnostic ion at m/z 81.0331 worked strongly in the assignment of OH-7 and substituent at C-8 of coumarin. McLafferty rearrangement occurring in coumarin glycoside while sugar group locating at C-4 was first observed, and new diagnostic ions at m/z 147.0440, 119.0488, and 91.0543 were constructed. CONCLUSIONS: Aromatic constituents of the granule were first profiled. A total of 114 aromatic compounds were identified; of these 85 compounds were identified first. Kaempferol-7-O-neohesperidoside and its homologues were mostly enriched in the granule. Considering their reported bioactivities, these analogues possibly contribute greatly to clinical efficacy. Our results provided a new fragmentation theory for coumarins and a new material basis for the quality control of the granule.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Espectrometria de Massas por Ionização por Electrospray/métodos , Medicamentos de Ervas Chinesas/química , Íons/química , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos
7.
Mol Biol Rep ; 50(9): 7161-7171, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37405521

RESUMO

BACKGROUND: We investigated the toxicity and biocompatibility of a novel Mg-3Nd-1Gd-0.3Sr-0.2Zn-0.4Zr (abbreviated to Mg-Nd-Gd-Sr) alloy in the osteoblastic cell line MC3T3-E1 as osteoblasts play an important role in bone repair and remodeling. METHODS: We used cytotoxicity tests and apoptosis to investigate the effects of the Mg-Nd-Gd-Sr alloy on osteoblastic cells. Cell bioactivity, cell adhesion, cell proliferation, mineralization, ALP activity, and expression of BMP-2 and OPG by osteoblastic cells were also used to investigate the biocompatibility of Mg-Nd-Gd-Sr alloy. RESULTS: The results showed that the Mg-Nd-Gd-Sr alloy had no obvious cytotoxicity, and did not induce apoptosis to MC3T3-E1 cells. Compared with the control group, the number of adherent cells within 12 h was increased significantly in each experimental group (P < 0.05); the OD value of MC3T3-E1 cells was increased significantly in each experimental group on days 1 and 3 of culture (P < 0.05); the number of mineralized nodules formed in each experimental group was significantly increased (P < 0.05), and ALP activity was significantly increased in each experimental group (P < 0.05). RT-PCR results showed that the mRNA expression of BMP-2 and OPG was significantly higher in each experimental group compared with the control group (P < 0.05). Western blotting showed that the Mg-Nd-Gd-Sr alloy extract significantly increased the protein expression of BMP-2 and OPG compared with the control group (P < 0.05). CONCLUSIONS: Our data indicated that the novel Mg-Nd-Gd-Sr-Zn-Zr alloy had no obvious cytotoxic effects, and did not cause apoptosis to MC3T3-E1 cells; meanwhile it promoted cell adhesion, cell proliferation, mineralization, and ALP activity of osteoblasts. During this process, there was an increase in the expressions of BMP-2 and OPG mRNAs and proteins.


Assuntos
Ligas , Osteoblastos , Ligas/metabolismo , Ligas/farmacologia , Linhagem Celular , Adesão Celular , Osteoblastos/metabolismo , Diferenciação Celular , Proliferação de Células
8.
Environ Monit Assess ; 195(2): 340, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708486

RESUMO

Soil erosion and nutrient loss are important environmental and ecological problems in the Dianchi watershed in southwestern China. Woodlands-the primary land type in the Dianchi watershed-play an important ecological role in controlling soil and water loss. In this study, we compared soil erosion and loss of total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) in woodlands of different ages, i.e., young forest, medium forest, and near-mature forest, at the Dongda River catchment in south-western Dianchi watershed. Furthermore, changes in stoichiometries in soil were analyzed. The average degree of erosion of each forest age stage was below moderate. Based on the non-arable soil erosion modulus models of 137Cs and 210Pbex, the soil erosion rates decreased gradually with the increasing forest age. The forest age affected soil nutrient distribution and loss. The losses of TOC and TP gradually decreased, while the losses of TN first increased and then decreased with the growth of forest age. TOC, TN, and TP were enriched in the topsoil. Forest age affected soil stoichiometry and soil nutrient supply level. In general, the forest can effectively reduce soil erosion and nutrient loss in the red soil area with the forest age increasing.


Assuntos
Monitoramento Ambiental , Erosão do Solo , Florestas , China , Solo , Nitrogênio/análise , Fósforo/análise
9.
Kidney Int ; 97(6): 1181-1195, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139089

RESUMO

Extracellular vesicles such as exosomes are involved in mediating cell-cell communication by shuttling an assortment of proteins and genetic information. Here, we tested whether renal tubule-derived exosomes play a central role in mediating kidney fibrosis. The production of exosomes was found to be increased in the early stage of unilateral ureteral obstruction, ischemia reperfusion injury or 5/6 nephrectomy models of kidney disease. Exosome production occurred primarily in renal proximal tubular epithelium and was accompanied by induction of sonic hedgehog (Shh). In vitro, upon stimulation with transforming growth factor-ß1, kidney proximal tubular cells (HKC-8) increased exosome production. Purified exosomes from these cells were able to induce renal interstitial fibroblast (NRK-49F) activation. Conversely, pharmacologic inhibition of exosome secretion with dimethyl amiloride, depletion of exosome from the conditioned media or knockdown of Shh expression abolished the ability of transforming growth factor-ß1-treated HKC-8 cells to induce NRK-49F activation. In vivo, injections of tubular cell-derived exosomes aggravated kidney injury and fibrosis, which was negated by an Shh signaling inhibitor. Blockade of exosome secretion in vivo ameliorated renal fibrosis after either ischemic or obstructive injury. Furthermore, knockdown of Rab27a, a protein that is essential for exosome formation, also preserved kidney function and attenuated renal fibrotic lesions in mice. Thus, our results suggest that tubule-derived exosomes play an essential role in renal fibrogenesis through shuttling Shh ligand. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against renal fibrosis.


Assuntos
Exossomos , Nefropatias , Animais , Fibroblastos , Fibrose , Proteínas Hedgehog , Rim/patologia , Nefropatias/patologia , Camundongos , Fator de Crescimento Transformador beta1
10.
Biol Blood Marrow Transplant ; 26(3): 493-501, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31765697

RESUMO

Most children who may benefit from stem cell transplantation lack a matched related donor. Alternative donor transplantations with an unrelated donor (URD) or a partially matched related donor (PMRD) carry an increased risk of graft-versus-host-disease (GVHD) and mortality compared with matched related donor transplantations. We hypothesized that a strategy of partial CD3+/CD19+ depletion for URD or PMRD peripheral stem cell transplantation (PSCT) would attenuate the risks of GVHD and mortality. We enrolled 84 pediatric patients with hematologic malignancies at the Children's Hospital of Philadelphia and the Children's Hospital of Wisconsin between April 2005 and February 2015. Two patients (2.4%) experienced primary graft failure. Relapse occurred in 23 patients (27.4%; cumulative incidence 26.3%), and 17 patients (20.2%) experienced nonrelapse mortality (NRM). Grade III-IV acute GVHD was observed in 18 patients (21.4%), and chronic GVHD was observed and graded as limited in 24 patients (35.3%) and extensive in 8 (11.7%). Three-year overall survival (OS) was 61.8% (95% confidence interval [CI], 50.2% to 71.4%) and event-free survival (EFS) was 52.0% (95% CI, 40.3% to 62.4%). Age ≥15 years was associated with decreased OS (P= .05) and EFS (P= .05). Relapse was more common in children in second complete remission (P = .03). Partially CD3+-depleted alternative donor PSCT NRM, OS, and EFS compare favorably with previously published studies of T cell-replete PSCT. Historically, T cell-replete PSCT has been associated with a higher incidence of extensive chronic GVHD compared with limited chronic GVHD, which may explain the comparatively low relapse and NRM rates in our study cohort despite similar overall rates of chronic GVHD. Partial T cell depletion may expand donor options for children with malignant transplantation indications lacking a matched related donor by mitigating, but not eliminating, chronic GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco de Sangue Periférico , Adolescente , Criança , Neoplasias Hematológicas/terapia , Humanos , Recidiva Local de Neoplasia , Taxa de Sobrevida , Condicionamento Pré-Transplante , Doadores não Relacionados
11.
Biochem Biophys Res Commun ; 530(1): 47-53, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828314

RESUMO

Emerging evidences indicated that long non-coding RNAs (LncRNAs) regulated the pathogenesis of retinoblastoma (RB). However, up until now, the role of LncRNA Linc-PINT in the regulation of RB progression is still largely unknown. The present study identified LncRNA Linc-PINT as a tumor suppressor to hinder RB development by regulating miR-523-3p/Dickkopf-1 (DKK1) axis. Mechanistically, Linc-PINT was low-expressed, while miR-523-3p was high-expressed in RB cells, compared to the normal retinal epithelial cells (ARPE-19). Further gain- and loss-function experiments verified that both upregulation of Linc-PINT and miR-523-3p downregulation slowed down cell growth, invasion and migration, and promoted cell apoptosis in RB cells, but Linc-PINT ablation and miR-523-3p overexpression promoted malignant phenotypes in RB cells. In addition, the dual-luciferase reporter gene system and RNA pull-down assay validated that Linc-PINT positively regulated DKK1 expressions by sponging miR-523-3p, and Linc-PINT inhibited RB progression by regulating miR-523-3p/DKK1 axis. Functionally, we found that both miR-523-3p overexpression and DKK1 silence abrogated the anti-cancer effects of overexpressed Linc-PINT on RB cells. Finally, Linc-PINT inhibited tumorigenicity of RB cells in xenograft mice models. In general, analysis of the data suggested that Linc-PINT inhibited miR-523-3p to upregulate DKK1, resulting in the inhibition of RB, and we demonstrated that Linc-PINT and miR-523-3p could be utilized as potential diagnostic and therapeutic biomarkers for RB in clinic.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , RNA Longo não Codificante/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Neoplasias da Retina/patologia , Retinoblastoma/patologia
12.
Entropy (Basel) ; 22(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33286027

RESUMO

A (1,0)-super solution is a satisfying assignment such that if the value of any one variable is flipped to the opposite value, the new assignment is still a satisfying assignment. Namely, every clause must contain at least two satisfied literals. Because of its robustness, super solutions are concerned in combinatorial optimization problems and decision problems. In this paper, we investigate the existence conditions of the (1,0)-super solution of ( k , s ) -CNF formula, and give a reduction method that transform from k-SAT to (1,0)- ( k + 1 , s ) -SAT if there is a ( k + 1 , s )-CNF formula without a (1,0)-super solution. Here, ( k , s ) -CNF is a subclass of CNF in which each clause has exactly k distinct literals, and each variable occurs at most s times. (1,0)- ( k , s ) -SAT is a problem to decide whether a ( k , s ) -CNF formula has a (1,0)-super solution. We prove that for k > 3 , if there exists a ( k , s ) -CNF formula without a (1,0)-super solution, (1,0)- ( k , s ) -SAT is NP-complete. We show that for k > 3 , there is a critical function φ ( k ) such that every ( k , s ) -CNF formula has a (1,0)-super solution for s ≤ φ ( k ) and (1,0)- ( k , s ) -SAT is NP-complete for s > φ ( k ) . We further show some properties of the critical function φ ( k ) .

13.
Kidney Int ; 95(1): 62-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409456

RESUMO

The development of acute kidney injury (AKI) is a complex process involving tubular, inflammatory, and vascular components, but less is known about the role of the interstitial microenvironment. We have previously shown that the extracellular matrix glycoprotein tenascin-C (TNC) is induced in fibrotic kidneys. In mouse models of AKI induced by ischemia-reperfusion injury (IRI) or cisplatin, TNC was induced de novo in the injured sites and localized to the renal interstitium. The circulating level of TNC protein was also elevated in AKI patients after cardiac surgery. Knockdown of TNC by shRNA in vivo aggravated AKI after ischemic or toxic injury. This effect was associated with reduced renal ß-catenin expression, suggesting an impact on Wnt signaling. In vitro, TNC protected tubular epithelial cells against apoptosis and augmented Wnt1-mediated ß-catenin activation. Co-immunoprecipitation revealed that TNC physically interacts with Wnt ligands. Furthermore, a TNC-enriched kidney tissue scaffold prepared from IRI mice was able to recruit and concentrate Wnt ligands from the surrounding milieu ex vivo. The ability to recruit Wnt ligands in this ex vivo model diminished after TNC depletion. These studies indicate that TNC is specifically induced at sites of injury and recruits Wnt ligands, thereby creating a favorable microenvironment for tubular repair and regeneration after AKI.


Assuntos
Injúria Renal Aguda/patologia , Tenascina/metabolismo , Via de Sinalização Wnt , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Adulto , Animais , Apoptose , Linhagem Celular , Cisplatino/toxicidade , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Ligantes , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Regeneração , Traumatismo por Reperfusão/complicações , Tenascina/sangue , Tenascina/genética , Proteína Wnt1/metabolismo
14.
Biol Blood Marrow Transplant ; 25(3): 549-555, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30312755

RESUMO

Unrelated donor hematopoietic stem cell transplantation (HSCT) is increasingly being used to cure nonmalignant hematologic diseases (NMHD) in patients who lack HLA matched related donors. Both graft rejection and graft-versus-host disease (GVHD) remain major barriers to safe and effective transplant for these patients requiring unrelated donors. Partial T cell depletion combined with peripheral stem cell transplantation (pTCD-PSCT) has the potential advantages of providing a high stem cell dose to facilitate rapid engraftment, maintaining cells that may facilitate engraftment, and decreasing GVHD risk compared with T cell-replete HSCT. Here, we report a single-institution, retrospective experience of unrelated donor pTCD-PSCT for pediatric patients with NMHD. From 2014 to 2017, 12 pediatric patients with transfusion-dependent NMHD underwent matched unrelated donor (MUD) or mismatched unrelated donor (MMUD) pTCD HSCT in our center using disease-specific conditioning. Donor PSCs underwent CD3+ T cell and CD19+ B cell depletion using CliniMACS, followed by a targeted addback of 1 × 105 CD3+ T cells/kg to the graft before infusion. All 12 patients demonstrated rapid trilinear engraftment. At a median follow-up of 740days (range, 279 to 1466), all patients were alive with over 92% total peripheral blood donor chimerism and without transfusion dependence or recurrence of their underlying hematologic disease. Immune reconstitution was rapid and comparable with T cell-replete HSCT. No patients developed severe acute GVHD (grades III to IV) or chronic extensive GVHD, and all patients had discontinued systemic immune suppression. Viral reactivations were common, but no patient developed symptoms of life-threatening infectious disease. Our data indicate that MUD and MMUD pTCD-PSCTs are safe and effective approaches that enable rapid engraftment and immune reconstitution, prevent severe GVHD, and expand availability of HSCT to any patients with NMHD who have closely MUDs.


Assuntos
Antígenos CD19 , Complexo CD3 , Doenças Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Histocompatibilidade , Depleção Linfocítica/métodos , Criança , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Transfusão de Linfócitos/métodos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Doadores não Relacionados
15.
Microb Cell Fact ; 18(1): 90, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122258

RESUMO

BACKGROUND: Surfactin is a cyclic lipopeptide that is of great industrial use owing to its extraordinary surfactant power and antimicrobial, antiviral, and antitumor activities. Surfactin is synthesized by a condensation reaction in microbes, which uses fatty acids and four kinds of amino acids (L-glutamate, L-aspartate, L-leucine and L-valine) as precursors. Surfactin biosynthesis could be improved by increasing the supply of fatty acids; however, the effect of the regulation of amino acid metabolism on surfactin production was not yet clear. RESULTS: In this study, we aimed to improve surfactin production in B. subtilis by repressing the genes on the branch metabolic pathways of amino acid biosynthesis using CRISPRi technology. First, 20 genes were inhibited individually, resulting in 2.5- to 627-fold decreases in transcriptional level as determined by RT-qPCR. Among the 20 recombinant strains, 16 strains obtained higher surfactin titres than that produced by the parent BS168NU-Sd strain (the surfactin production of BS168NU-Sd with only dCas9 but no sgRNA expression was 0.17 g/L). In particular, the strains in which the yrpC, racE or murC genes were inhibited individually produced 0.54, 0.41, or 0.42 g/L surfactin, respectively. All three genes are related to the metabolism of L-glutamate, whose acylation is the first step in the surfactin condensation reaction. Furthermore, these three genes were repressed in combination, and the strain with co-inhibition of yrpC and racE produced 0.75 g/L surfactin, which was 4.69-fold higher than that of the parent strain. In addition, the inhibition of bkdAA and bkdAB, which are related to the metabolism of L-leucine and L-valine, not only improved surfactin production but also increased the proportion of the C14 isoform. CONCLUSIONS: This study, to the best of our knowledge for the first time, systematically probed the regulatory effect of increasing the supply of amino acids on surfactin production. It provided an effective strategy and a new perspective for systematic studies on surfactin and other amino acid-derived chemicals.


Assuntos
Aminoácidos , Bacillus subtilis , Lipopeptídeos , Redes e Vias Metabólicas/genética , Tensoativos/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Lipopeptídeos/biossíntese , Lipopeptídeos/genética
16.
Mikrochim Acta ; 186(9): 640, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31440852

RESUMO

A fluorometric method is described for "turn-on" sensing of pH values via black phosphorus quantum dots (BPQD). Water-stable BPQD were synthesized by a liquid exfoliation method and characterized by TEM, FT-IR, XPS, and absorption and fluorescence spectra. The nanoparticles of BPQD have a uniform distribution with an average size of 5.2 nm. They exhibit bright green fluorescence, with excitation/emission maxima at 420/515 nm. The fluorescence of the BPQD is likely to arise from the quasi-molecular fluorophores of polycyclic aromatic compounds carrying P-P, P-O-P, and PxOy functions on its surface. The protonation and deprotonation of hydroxyl groups of BPQD causes a different degree of quenching of the BPQD. At pH values below 4.0, protons bind to BPQD to form non-fluorescent ground state complexes. At pH values above 4.0, the hydroxyl groups become deprotonated, and this induces the recovery of fluorescence. The sensor has a linear response in the pH range of 1.0-9.0. It was successfully applied to the determination of the pH values in human urine and serum samples. Graphical abstract Schematic representation of the preparation of black phosphorus quantum dots (BPQDs) from powdered BP crystals using liquid-phase exfoliation in N-methyl-2-pyrrolidone solution. The BPQDs display green fluorescence at high pH values but no fluorescence at very low pH values.

17.
J Biol Chem ; 292(16): 6786-6798, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28242759

RESUMO

Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 (Atf4) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway.


Assuntos
Asparaginase/metabolismo , Fígado Gorduroso/metabolismo , Fígado/patologia , Obesidade/metabolismo , Fator 4 Ativador da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Apolipoproteína B-100/metabolismo , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/metabolismo , Fígado Gorduroso/patologia , Deleção de Genes , Glutationa/química , Sulfeto de Hidrogênio/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Peroxidases , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinases TOR/metabolismo , eIF-2 Quinase/metabolismo
18.
J Am Soc Nephrol ; 28(8): 2393-2408, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28270411

RESUMO

The (pro)renin receptor (PRR) is a transmembrane protein with multiple functions. However, its regulation and role in the pathogenesis of CKD remain poorly defined. Here, we report that PRR is a downstream target and an essential component of Wnt/ß-catenin signaling. In mouse models, induction of CKD by ischemia-reperfusion injury (IRI), adriamycin, or angiotensin II infusion upregulated PRR expression in kidney tubular epithelium. Immunohistochemical staining of kidney biopsy specimens also revealed induction of renal PRR in human CKD. Overexpression of either Wnt1 or ß-catenin induced PRR mRNA and protein expression in vitro Notably, forced expression of PRR potentiated Wnt1-mediated ß-catenin activation and augmented the expression of downstream targets such as fibronectin, plasminogen activator inhibitor 1, and α-smooth muscle actin (α-SMA). Conversely, knockdown of PRR by siRNA abolished ß-catenin activation. PRR potentiation of Wnt/ß-catenin signaling did not require renin, but required vacuolar H+ ATPase activity. In the mouse model of IRI, transfection with PRR or Wnt1 expression vectors promoted ß-catenin activation, aggravated kidney dysfunction, and worsened renal inflammation and fibrotic lesions. Coexpression of PRR and Wnt1 had a synergistic effect. In contrast, knockdown of PRR expression ameliorated kidney injury and fibrosis after IRI. These results indicate that PRR is both a downstream target and a crucial element in Wnt signal transmission. We conclude that PRR can promote kidney injury and fibrosis by amplifying Wnt/ß-catenin signaling.


Assuntos
Rim/patologia , Receptores de Superfície Celular/fisiologia , Insuficiência Renal Crônica/etiologia , Via de Sinalização Wnt/fisiologia , Animais , Modelos Animais de Doenças , Fibrose/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Pró-Renina
19.
Mikrochim Acta ; 185(12): 550, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443788

RESUMO

N/S/P-codoped carbon dots (CDs) are shown to be a viable fluorescent probe in a turn-off-on fluorometric assay for hydroquinone (HQ). The preparation of CDs was carried out using a one-step hydrothermal reaction starting with glyoxal and isocarbophos. The method is based on the formation of ground state complexes between CD and Fe(III) which leads to quenching of blue fluorescence (with excitation/emission peaks at 363/448 nm). On addition of HQ, it will be oxidized by Fe(III) upon which fluorescence recovers. This turn-off-on system can be utilized to quantify HQ. A linear relationship exists between fluorescence recovery and HQ concentration in range between 0.56 and 375 µM. The limit of detection is 0.16 µM. The assay was successfully applied to the determination of HQ in spiked water samples and developer samples. Graphical abstract Fluorometric determination of hydroquinone (with good selectivity over catechol and resorcinol) by using blue-emitting N/S/P-codoped carbon dots and the quenching effect of Fe(III).

20.
Mikrochim Acta ; 185(9): 419, 2018 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-30121832

RESUMO

An aptamer based method is described for the determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG) using resonance light scattering (RLS). Magnetic nanoparticles (MNPs) were employed as RLS probes. The probe DNA was placed on the surface of MNPs, which produces a rather low RLS signal. If, however, probe DNA hybridizes with the aptamer against 8-OHdG, a sandwich structure will be formed. This results in a significant enhancement of RLS intensity. The aptamer was used as the recognition element to capture 8-OHdG. 8-OHdG has a stronger affinity for the aptamer than probe DNA, and the conformation of the aptamer therefore switches from a double-stranded to a G-quadruplex structure. As a result, MNPs labeled with probe DNA are released, and RLS intensity decreases. The method allows 8-OHdG to be detected with a linear response in the 32 pM - 12.0 nM concentration range and an 11 pM limit of detection (at 3.29SB/m, according to the recent recommendation of IUPAC). The MNPs can be reused 5 times by applying an external magnetic field for collection. The method was successfully applied to analyze human urine samples for its content of 8-OHdG. It was also found that the levels of 8-OHdG noticeably increased with the increase of the Air Quality Index. Conceivably, the method is a viable tool to investigate the relationship between 8-OHdG levels and the effect of air pollution. Graphical abstract A reusable sensing strategy was constructed to detect urinary 8-OHdG based on "turn-off" resonance light scattering. The LOD was as low as 11 pM. This study showed some preliminary data for the association between oxidative stress and air pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA