Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Chem Lett ; 19(4): 3477-3485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776610

RESUMO

The novel coronavirus (COVID-19) has induced unprecedented improvements of air quality due to drastic shrinking of human activities during the pandemic lockdown in 2020. While declines of most air pollutants have been globally evidenced in most cities worldwide, there is few detailed spatial knowledge at local scale. Therefore, we present here a high resolution mapping of the 2018-2020 evolution of human activities and air pollutants in Wuhan. Human activities were assessed by nighttime light radiance. We measured the air quality index (AQI) as the maximum value among air quality sub-indices of SO2, NO2, CO, O3 and particulate matter. We also compared mean monthly pollutant concentration during January-April in 2018, 2019 and 2020. Mapping results show that variations of nighttime light radiance were heterogenous at local scale, showing both rises and declines in the same district. The radiance decreased in eight districts located mostly in the city center, as a result of lower human activity, but the radiance increased in the five surrounding districts, as a consequence of people staying at home. AQI was low during lockdown, averaging at 57, but showed strong daily variations with a slight pollution around February 5 with AQI rising to 126. During this pollution event, particulate matter, SO2, NO2 and CO levels were positively correlated, suggesting common sources, but were not correlated with ozone; and particulate matter, SO2, NO2 and CO decreased with relative humidity, suggesting removal by precipitation. Comparison of 2020 data with previous years shows that particulate matter and NO2 were highly reduced, CO was less reduced due to ongoing power industries, SO2 first declined then increased to exceed 2018-19 values due to coal combustion, and ozone levels was more abundant due both to less NOx pollution and the weekend effect. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10311-021-01222-x.

2.
Environ Sci Technol ; 53(21): 12506-12518, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31536707

RESUMO

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Pequim , China , Finlândia
3.
ACS Omega ; 8(37): 33321-33331, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744809

RESUMO

Ammonia thermochemical energy storage is based on a reversible reaction and realizes energy storage and utilization by absorbing and releasing heat. Under different energy flow densities, the efficiency of an ammonia reactor composed of multiple ammonia reaction tubes is different. Based on the coupling model of light, heat, and chemical energy of an ammonia decomposition reaction system, taking a 20 MW solar thermal power plant as the research object, this paper proposes a new model of ammonia energy storage system, which places the ammonia decomposition side in a low-pressure environment and the ammonia synthesis side in a high-pressure environment. The effects of different inlet temperatures, inlet flow rates, flow distribution, and energy flow density distribution on the ammonia energy storage system were studied. The results show that the increase of inlet temperature and the decrease of inlet flow rate are beneficial to the improvement of thermal efficiency and exergy efficiency of the system to a certain extent, but when the inlet temperature increases or the inlet flow rate decreases to a certain extent, the efficiency of the system will decline. Under the condition of nonuniform energy flow density and nonuniform inlet flow distribution, more ideal system thermal efficiency and exergy efficiency can be obtained.

4.
ACS Omega ; 7(7): 6142-6150, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224377

RESUMO

A combined steady-state and transient approach is employed to investigate the corrosion behavior of X80 pipeline steel in carbon dioxide-saturated brines. Continuous bubbling of carbon dioxide into a test vessel with 1 liter capacity is performed to simulate the flowing condition. The measurement of time-dependent open-circuit potential, polarization resistance, and electrochemical impedance spectroscopy (EIS) is conducted to interpret the evolution of dissolution processes at the corroding interface. Three distinguishing stages are observed at a temperature of 60 °C during a whole exposure of 144 h. Analyses mainly based on the consecutive mechanism show that after the first stage of the active-adsorption state, the anodic reaction is significantly retarded by the accumulation of (FeOH)ads on the iron surface, causing a sharp increase in the polarization resistance and the open-circuit potential, as well as the disappearance of the inductive loop in EIS. At the third stage, the formation of the corrosion product layer similarly reduces both the anodic and cathodic reactions, which arouses a linear increase in the polarization resistance with time and a capacitive loop in EIS but changes the open-circuit potential slightly. An increase in salinity in this study reduces the polarization resistance and enhances iron dissolution by promoting the formation and relaxation of (FeOH)ads; however, it brings little change to the developing time of the three stages obviously. At a low temperature of 20 °C, a protective product layer is not observed in carbon dioxide-saturated brine, and the dissolution of iron is mainly under activation control during the whole exposure. A notable enlarged polarization resistance and different interfacial processes are observed in an alkaline solution compared with those in acidic environments, which is deduced to be resulted from an impedance in the relaxation of (FeOH)ads by increasing pH. The observations in this study support well that the iron dissolution reaction at the initial stage exposed in carbon dioxide aqueous environments is dominant by water adsorption on the iron surface, and further investigation should be performed on the role that carbon dioxide plays in the evolution of corrosion products and the formation of a protective film on the steel surface by taking into account local water chemistry.

5.
ACS Omega ; 7(47): 43036-43044, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36519112

RESUMO

This paper proposed an optimized day-ahead generation model involving hydrogen-load demand-side response, with an aim to make the operation of an integrated wind-photovoltaic-energy storage hydrogen production system more cost-efficient. Considering the time-of-use electricity pricing plan, demand for hydrogen load, and the intermittency of renewable energy, the model has the ambition to achieve minimum daily cost of operating a hydrogen production system. The model is power-balanced, fit for energy storage devices, and developed through adaptive simulated annealing particle swarm optimization. Analysis results showed that the proposed optimized scheduling model helped avoid the significant purchase of electric power at peak times and reduced the cost of running the hydrogen production system, ensuring that the daily hydrogen energy produced could meet the daily demand for the gas load. This justified how the model and its algorithm were correctly and efficiently applied.

6.
Sci Prog ; 103(1): 36850419875907, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31829880

RESUMO

It is important to study the effects of heat flux on the thermo-hydraulic characteristics in a solar cavity receiver because of the non-uniform radiation flux temporally and spatially. In this article, we presented a mathematical model of thermo-hydraulic characteristics of a solar cavity receiver, considering the effect of heat flux distribution on the energy transfer (radiation-conduction-convection). Using the model, the thermo-hydraulic characteristics under high concentrated heat flux were studied and then optimized the characteristics from two aspects: tube diameter (22, 27, 32, and 38 mm) and connection structure of the heating surface (H-type, central inlet/outlet, and vertical U-type). It was found that flow distribution changed smoothly at the diameter of 27 mm with the increase of the heat flux; when the diameter of tubes at the certain distance (1.6σHF) from the spot center was replaced by 38 mm, the thermo-hydraulic characteristics were improved. For the evaporating surfaces, the thermo-hydraulic characteristics of working fluid (water) with the central inlet/outlet connection structure were better than those of the H-type connection structure. For the surperheated surfaces, the vertical U-type connection structure was applied to obtain the high temperature steam. These research findings are helpful for the safe and stable operation of the whole solar power system.

7.
RSC Adv ; 9(20): 11077-11081, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520271

RESUMO

Cerium oxide nanoparticles (CeNPs) have been shown to exhibit antioxidant capabilities, but their efficiency in scavenging reactive oxygen species (ROS) and the underlying mechanisms are not yet well understood. In this study, cerium dioxide nanoparticles (CeNPs) and nanorods (CeNRs) were found to exhibit much stronger scavenging activity than ·OH generation in phosphate buffered saline (PBS) and surrogate lung fluid (SLF). The larger surface area and higher defect density of CeNRs may lead to higher ·OH scavenging activity than for CeNPs. These insights are important to understand the redox activity of cerium nanomaterials and provide clues to the role of CeNPs in biological and environmental processes.

8.
J Nanosci Nanotechnol ; 15(4): 3161-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26353555

RESUMO

In this paper, a boiling stratified flow model in a metal-foam tube is proposed. First, based on Branuer non-equilibrium gas-liquid interface model, a force balance on the gas-liquid interface in metal-foam is calculated. The shape of the interface of upper gas phase and lower liquid phase in metal foam tube is obtained. As for the lower liquid phase, the energy conservation equations of liquid and metal foam are formulated, which account for porosity and fiber diameter of foam on the basis of non-local thermal equilibrium model (NTEM), respectively. Therefore, a profile of temperature difference between liquid and metal foam can be obtained. For the upper gas phase, an empirical correlation developed by other researchers is utilized to obtain temperature difference between gas phase and solid wall. In addition, the variation of the Reynolds number with increasing mass quality along the flow direction is acquired. Ultimately, an average circumference heat transfer coefficient is calculated. The results of circumference heat transfer coefficient agree well with available experimental data, showing the prediction of the proposed stratified flow model is feasible. The reason resulting in discrepancies between the prediction and experiment data is also illustrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA