Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 191(3): 1751-1770, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36617225

RESUMO

Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.


Assuntos
Medicago truncatula , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Flores/genética , Flores/metabolismo , Ácidos Graxos/metabolismo , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Mutação/genética
2.
Plant Physiol ; 189(1): 285-300, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139225

RESUMO

Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Dedos de Zinco
3.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298589

RESUMO

Alfalfa (Medicago sativa) is an important leguminous forage, known as the "The Queen of Forages". Abiotic stress seriously limits the growth and development of alfalfa, and improving the yield and quality has become an important research area. However, little is known about the Msr (methionine sulfoxide reductase) gene family in alfalfa. In this study, 15 Msr genes were identified through examining the genome of the alfalfa "Xinjiang DaYe". The MsMsr genes differ in gene structure and conserved protein motifs. Many cis-acting regulatory elements related to the stress response were found in the promoter regions of these genes. In addition, a transcriptional analysis and qRT-PCR (quantitative reverse transcription PCR) showed that MsMsr genes show expression changes in response to abiotic stress in various tissues. Overall, our results suggest that MsMsr genes play an important role in the response to abiotic stress for alfalfa.


Assuntos
Medicago sativa , Estresse Fisiológico , Estresse Fisiológico/genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
4.
J Integr Plant Biol ; 65(10): 2279-2291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526388

RESUMO

Compound leaf development requires the coordination of genetic factors, hormones, and other signals. In this study, we explored the functions of Class Ⅱ KNOTTED-like homeobox (KNOXII) genes in the model leguminous plant Medicago truncatula. Phenotypic and genetic analyses suggest that MtKNOX4, 5 are able to repress leaflet formation, while MtKNOX3, 9, 10 are not involved in this developmental process. Further investigations have shown that MtKNOX4 represses the CK signal transduction, which is downstream of MtKNOXⅠ-mediated CK biosynthesis. Additionally, two boundary genes, FUSED COMPOUND LEAF1 (orthologue of Arabidopsis Class M KNOX) and NO APICAL MERISTEM (orthologue of Arabidopsis CUP-SHAPED COTYLEDON), are necessary for MtKNOX4-mediated compound leaf formation. These findings suggest, that among the members of MtKNOXⅡ, MtKNOX4 plays a crucial role in integrating the CK pathway and boundary regulators, providing new insights into the roles of MtKNOXⅡ in regulating the elaboration of compound leaves in M. truncatula.


Assuntos
Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
5.
New Phytol ; 236(4): 1512-1528, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031740

RESUMO

Stipule morphology is a classical botanical key character used in plant identification. Stipules are considerably diverse in size, function and architecture, such as leaf-like stipules, spines or tendrils. However, the molecular mechanism that regulates stipule identity remains largely unknown. We isolated mutants with abnormal stipules. The mutated gene encodes the NODULE ROOT1 (MtNOOT1), which is the ortholog of BLADE-ON-PETIOLE (BOP) in Medicago truncatula. We also obtained mutants of MtNOOT2, the homolog of MtNOOT1, but they do not show obvious defects in stipules. The mtnoot1 mtnoot2 double mutant shows a higher proportion of transformation from stipules to leaflet-like stipules than the single mutants, suggesting that they redundantly determine stipule identity. Further investigations show that MtNOOTs control stipule initiation together with SINGLE LEAFLET1 (SGL1), which functions in development of lateral leaflets. Increasing SGL1 activity in mtnoot1 mtnoot2 is sufficient for the transformation of stipules to leaves. Moreover, MtNOOTs inhibit SGL1 expression during stipule development, which is probably conserved in legume species. Our study proposes a genetic regulatory model for stipule development, specifically with regard to the MtNOOTs-SGL1 module, which functions in two phases of stipule development, first in the control of stipule initiation and second in stipule patterning.


Assuntos
Arabidopsis , Medicago truncatula , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Medicago truncatula/metabolismo , Pisum sativum/genética , Folhas de Planta/metabolismo , Mutação/genética
6.
Plant Physiol ; 186(3): 1606-1615, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779764

RESUMO

Physical dormancy in seeds exists widely in seed plants and plays a vital role in maintaining natural seed banks. The outermost cuticle of the seed coat forms a water-impermeable layer, which is critical for establishing seed physical dormancy. We previously set up the legume plant Medicago truncatula as an excellent model for studying seed physical dormancy, and our studies revealed that a class II KNOTTED-like homeobox, KNOX4, is a transcription factor critical for controlling hardseededness. Here we report the function of a seed coat ß-ketoacyl-CoA synthase, KCS12. The expression level of KCS12 is significantly downregulated in the knox4 mutant. The KCS12 gene is predominantly expressed in the seed coat, and seed development in the M. truncatula kcs12 mutant is altered. Further investigation demonstrated that kcs12 mutant seeds lost physical dormancy and were able to absorb water without scarification treatment. Chemical analysis revealed that concentrations of C24:0 lipid polyester monomers are significantly decreased in mutant seeds, indicating that KCS12 is an enzyme that controls the production of very long chain lipid species in the seed coat. A chromatin immunoprecipitation assay demonstrated that the expression of KCS12 in the seed coat is directly regulated by the KNOX4 transcription factor. These findings define a molecular mechanism by which KNOX4 and KCS12 control formation of the seed coat and seed physical dormancy.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Germinação/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , Medicago truncatula/metabolismo , Dormência de Plantas/genética , Sementes/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Genes de Plantas , Variação Genética , Genótipo , Germinação/fisiologia , Dormência de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(11): 5176-5181, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30782811

RESUMO

Floral development is one of the model systems for investigating the mechanisms underlying organogenesis in plants. Floral organ identity is controlled by the well-known ABC model, which has been generalized to many flowering plants. Here, we report a previously uncharacterized MYB-like gene, AGAMOUS-LIKE FLOWER (AGLF), involved in flower development in the model legume Medicago truncatula Loss-of-function of AGLF results in flowers with stamens and carpel transformed into extra whorls of petals and sepals. Compared with the loss-of-function mutant of the class C gene AGAMOUS (MtAG) in M. truncatula, the defects in floral organ identity are similar between aglf and mtag, but the floral indeterminacy is enhanced in the aglf mutant. Knockout of AGLF in the mutants of the class A gene MtAP1 or the class B gene MtPI leads to an addition of a loss-of-C-function phenotype, reflecting a conventional relationship of AGLF with the canonical A and B genes. Furthermore, we demonstrate that AGLF activates MtAG in transcriptional levels in control of floral organ identity. These data shed light on the conserved and diverged molecular mechanisms that control flower development and morphology among plant species.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Especificidade de Órgãos/genética , Proteínas de Plantas/genética , Transcrição Gênica , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Medicago truncatula/ultraestrutura , Mutação/genética , Fenótipo , Proteínas de Plantas/metabolismo
8.
Plant Biotechnol J ; 19(2): 351-364, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32816361

RESUMO

Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.


Assuntos
Medicago truncatula , Pulvínulo , Estudos Transversais , Regulação da Expressão Gênica de Plantas/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
9.
Plant Biotechnol J ; 19(12): 2454-2468, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272801

RESUMO

Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.


Assuntos
Panicum , Lectinas , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteômica
10.
J Exp Bot ; 72(22): 7769-7777, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34329408

RESUMO

In nature, some plant species produce seedpods with spines, which is an adaptive biological trait for protecting the seed and helping seed dispersal. However, the molecular mechanism of spine formation is still unclear. While conducting routine tissue culture and transformation in the model legume Medicago truncatula, we identified a smooth seedpod (ssp1) mutant with a suite of other phenotypic changes. Preliminary analysis showed that the mutation was derived from the tissue culture process. Genetic segregation analysis suggested that ssp1 is a recessive mutant. By combining whole-genome sequencing and bioinformatics analysis, we found that the mutant phenotype was caused by a single nucleotide polymorphism and a 30 bp deletion in the gene locus Medtr4g039430, named SSP1. Complementation of the M. truncatula ssp1 and Arabidopsis twd1 mutants showed complete restoration, indicating that SSP1 is an ortholog of Arabidopsis TWD1 which encodes an immunophilin-like FK506-binding protein 42. The formation of spines on seedpods is associated with auxin transport. The method used in this study offers an effective way for detecting genes responsible for somaclonal variations. The results demonstrate, for the first time, that SSP1 plays a crucial role in the determination of spine formation on seedpods.


Assuntos
Arabidopsis , Medicago truncatula , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Fenótipo , Sementes
11.
Physiol Mol Biol Plants ; 27(6): 1413-1421, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34220046

RESUMO

The legume plant alfalfa (Medicago sativa L.) is a widely cultivated perennial forage due to its high protein content, palatability, and strong adaptability to diverse agro-ecological zones. Alfalfa is a self-incompatible cross-pollinated autotetraploid species with tetrasomic inheritance. Therefore, maintaining excellent traits through seed reproduction is a prime challenge in alfalfa. However, the cutting propagation technology could enable consistent multiplication of quality plants that are genetically identical to the parent plant. The current study aimed to develop a simple, cost-effective, reproducible, and efficient hydroponic cutting method to preserve alfalfa plants and for molecular research. In this study, alfalfa landrace 'Wudi' was grown in hydroponics for 30 days and used as source material for cuttings. The top, middle and bottom sections of its stem were used as cuttings. The rooting rate, root length, and stem height of the different stem sections were compared to determine the best segment for alfalfa propagation in four nutrient treatments (HM, HM + 1/500H, HM + 1/1000H and d HM + 1/2000H). After 21 days of culture, the rooting rates of all the three stem types under four cutting nutrient solutions were above 78%. The rooting rate of the middle and bottom parts in HM + 1/1000 H and HM + 1/2000 H nutrient solutions reached more than 93%, with a higher health survey score (> 4.70). In conclusion, this study developed a de novo cutting propagation method that can be used to conserve and propagate germplasm in breeding programs and research. This method is a new report on the cutting propagation of alfalfa by hydroponics, which could supplement the existing cutting propagation methods.

12.
Plant J ; 100(3): 562-571, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350797

RESUMO

Leaves are derived from the shoot apical meristem with three distinct axes: dorsoventral, proximodistal and mediolateral. Different regulators are involved in the establishment of leaf polarity. Members of the class III homeodomain-leucine zipper (HD-ZIPIII) gene family are critical players in the determination of leaf adaxial identity mediated by microRNA165/166. However, their roles in compound leaf development are still unclear. By screening of a retrotransposon-tagged mutant population of the model legume plant Medicago truncatula, a mutant line with altered leaflet numbers was isolated and characterized. Mutant leaves partially lost their adaxial identity. Leaflet numbers in the mutant were increased along the proximodistal axis, showing pinnate pentafoliate leaves in most cases, in contrast to the trifoliate leaves of the wild type. Detailed characterization revealed that a lesion in a HD-ZIPIII gene, REVOLUTA (MtREV1), resulted in the defects of the mutant. Overexpression of MtMIR166-insensitive MtREV1 led to adaxialized leaves and ectopic leaflets along the dorsoventral axis. Accompanying the abnormal leaf patterning, the free auxin content was affected. Our results demonstrate that MtREV1 plays a key role in determination of leaf adaxial-abaxial polarity and compound leaf patterning, which is associated with proper auxin homeostasis.


Assuntos
Padronização Corporal/genética , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase , Zíper de Leucina , Medicago truncatula/citologia , Medicago truncatula/fisiologia , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , RNA de Plantas/genética
13.
PLoS Genet ; 13(3): e1006649, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28264034

RESUMO

Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs.


Assuntos
Citocininas/genética , Medicago truncatula/genética , Panicum/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Biocombustíveis , Biomassa , Brachypodium/genética , Brachypodium/metabolismo , Metabolismo dos Carboidratos , Proliferação de Células , Imunoprecipitação da Cromatina , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Citocininas/metabolismo , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/metabolismo , Oxirredutases/genética , Panicum/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Transgenes
14.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228084

RESUMO

Polar auxin transport mediated by PIN-FORMED (PIN) proteins is critical for plant growth and development. As an environmental cue, shade stimulates hypocotyls, petiole, and stem elongation by inducing auxin synthesis and asymmetric distributions, which is modulated by PIN3,4,7 in Arabidopsis. Here, we characterize the MtPIN1 and MtPIN3, which are the orthologs of PIN3,4,7, in model legume species Medicago truncatula. Under the low Red:Far-Red (R:FR) ratio light, the expression of MtPIN1 and MtPIN3 is induced, and shadeavoidance response is disrupted in mtpin1 mtpin3 double mutant, indicating that MtPIN1 and MtPIN3 have a conserved function in shade response. Surprisingly, under the normal growth condition, mtpin1 mtpin3 displayed the constitutive shade avoidance responses, such as the elongated petiole, smaller leaf, and increased auxin and chlorophyll content. Therefore, MtPIN1 and MtPIN3 play dual roles in regulation of shadeavoidance response under different environments. Furthermore, these data suggest that PIN3,4,7 and its orthologs have evolved conserved and specific functions among species.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Proteínas de Membrana Transportadoras/genética , Folhas de Planta/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Clorofila/biossíntese , Clorofila/genética , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Luz , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos da radiação , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
BMC Genomics ; 20(1): 552, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277566

RESUMO

BACKGROUND: SQUAMOSA Promoter Binding Protein-Likes (SPLs) proteins are plant-specific transcription factors that play many crucial roles in plant growth and development. However, there is little information about SPL family in the model legume Medicago truncatula. RESULTS: In this study, a total of 23 MtSPL genes were identified in M. truncatula genome, in which 17 of the MtSPLs contained the putative MtmiR156 binding site at the coding or 3' UTR regions. Tissue-specific expression pattern analysis showed that most MtmiR156-targeted MtSPLs were highly expressed in seed and pod. The observation of MtmiR156B-overexpressing plants reveals that MtmiR156/MtSPL modules are not only involved in the development of leaves and branches, but also in the seed pod development, especially the formation of spine on pod. CONCLUSION: The spines on pods are developed in many plant species, which allow pods to adhere to the animals, and then be transported on the outside. This study sheds light on the new function of SPL family in seed dispersal by controlling the formation of spiky pod, and provides insights on understanding evolutionary divergence of the members of SPL gene family among plant species.


Assuntos
Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , MicroRNAs , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Frutas/anatomia & histologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas , RNA de Plantas , Sementes/genética , Sementes/crescimento & desenvolvimento
16.
Plant Biotechnol J ; 17(4): 836-845, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30267599

RESUMO

Ferulate 5-hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O-methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT-down-regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down-regulation of F5H in COMT-RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5-OH G units. Conversely, overexpression of F5H in COMT-RNAi transgenic plants reduced G units and increased 5-OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down-regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up-regulation and down-regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Metiltransferases/metabolismo , Panicum/enzimologia , Biomassa , Parede Celular/metabolismo , Regulação para Baixo , Metiltransferases/genética , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA
17.
New Phytol ; 222(3): 1610-1623, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30688366

RESUMO

The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.


Assuntos
Flores/fisiologia , Panicum/metabolismo , Panicum/fisiologia , Proteínas de Plantas/metabolismo , Biomassa , Regulação para Baixo/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/crescimento & desenvolvimento , Inflorescência/ultraestrutura , MicroRNAs/genética , MicroRNAs/metabolismo , Panicum/genética , Panicum/ultraestrutura , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Açúcares/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(25): 6997-7002, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274062

RESUMO

Physical dormancy of seed is an adaptive trait that widely exists in higher plants. This kind of dormancy is caused by a water-impermeable layer that blocks water and oxygen from the surrounding environment and keeps embryos in a viable status for a long time. Most of the work on hardseededness has focused on morphological structure and phenolic content of seed coat. The molecular mechanism underlying physical dormancy remains largely elusive. By screening a large number of Tnt1 retrotransposon-tagged Medicago truncatula lines, we identified nondormant seed mutants from this model legume species. Unlike wild-type hard seeds exhibiting physical dormancy, the mature mutant seeds imbibed water quickly and germinated easily, without the need for scarification. Microscopic observations of cross sections showed that the mutant phenotype was caused by a dysfunctional palisade cuticle layer in the seed coat. Chemical analysis found differences in lipid monomer composition between the wild-type and mutant seed coats. Genetic and molecular analyses revealed that a class II KNOTTED-like homeobox (KNOXII) gene, KNOX4, was responsible for the loss of physical dormancy in the seeds of the mutants. Microarray and chromatin immunoprecipitation analyses identified CYP86A, a gene associated with cutin biosynthesis, as one of the downstream target genes of KNOX4 This study elucidated a novel molecular mechanism of physical dormancy and revealed a new role of class II KNOX genes. Furthermore, KNOX4-like genes exist widely in seed plants but are lacking in nonseed species, indicating that KNOX4 may have diverged from the other KNOXII genes during the evolution of seed plants.


Assuntos
Genes Homeobox , Genes de Plantas , Medicago/genética , Dormência de Plantas/genética , Sementes , Regulação da Expressão Gênica de Plantas , Medicago/embriologia , Mutação
19.
Plant Biotechnol J ; 16(4): 951-962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28941083

RESUMO

Biomass yield, salt tolerance and drought tolerance are important targets for alfalfa (Medicago sativa L.) improvement. Medicago truncatula has been developed into a model plant for alfalfa and other legumes. By screening a Tnt1 retrotransposon-tagged M. truncatula mutant population, we identified three mutants with enhanced branching. Branch development determines shoot architecture which affects important plant functions such as light acquisition, resource use and ultimately impacts biomass production. Molecular analyses revealed that the mutations were caused by Tnt1 insertions in the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8) gene. The M. truncatula spl8 mutants had increased biomass yield, while overexpression of SPL8 in M. truncatula suppressed branching and reduced biomass yield. Scanning electron microscopy (SEM) analysis showed that SPL8 inhibited branching by directly suppressing axillary bud formation. Based on the M. truncatula SPL8 sequence, alfalfa SPL8 (MsSPL8) was cloned and transgenic alfalfa plants were produced. MsSPL8 down-regulated or up-regulated alfalfa plants exhibited similar phenotypes to the M. truncatula mutants or overexpression lines, respectively. Specifically, the MsSPL8 down-regulated alfalfa plants showed up to 43% increase in biomass yield in the first harvest. The impact was even more prominent in the second harvest, with up to 86% increase in biomass production compared to the control. Furthermore, down-regulation of MsSPL8 led to enhanced salt and drought tolerance in transgenic alfalfa. Results from this research offer a valuable approach to simultaneously improve biomass production and abiotic stress tolerance in legumes.


Assuntos
Medicago sativa/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Biomassa , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/fisiologia , Mutação , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Tolerância ao Sal/genética
20.
Plant Biotechnol J ; 16(1): 39-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436149

RESUMO

Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.


Assuntos
Panicum/genética , Panicum/microbiologia , Plantas Geneticamente Modificadas/genética , Biomassa , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA