Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 201(2): 269-286, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724470

RESUMO

AbstractPopulation responses to environmental variation ultimately depend on within-individual and among-individual variation in labile phenotypic traits that affect fitness and resulting episodes of selection. Yet complex patterns of individual phenotypic variation arising within and between time periods, as well as associated variation in selection, have not been fully conceptualized or quantified. We highlight how structured patterns of phenotypic variation in dichotomous threshold traits can theoretically arise and experience varying forms of selection, shaping overall phenotypic dynamics. We then fit novel multistate models to 10 years of band-resighting data from European shags to quantify phenotypic variation and selection in a key threshold trait underlying spatioseasonal population dynamics: seasonal migration versus residence. First, we demonstrate substantial among-individual variation alongside substantial between-year individual repeatability in within-year phenotypic variation ("flexibility"), with weak sexual dimorphism. Second, we demonstrate that between-year individual variation in within-year phenotypes ("supraflexibility") is structured and directional, consistent with the threshold trait model. Third, we demonstrate strong survival selection on within-year phenotypes-and hence on flexibility-that varies across years and sexes, including episodes of disruptive selection representing costs of flexibility. By quantitatively combining these results, we show how supraflexibility and survival selection on migratory flexibility jointly shape population-wide phenotypic dynamics of seasonal movement.


Assuntos
Migração Animal , Aves , Animais , Estações do Ano , Migração Animal/fisiologia , Dinâmica Populacional , Aves/fisiologia , Fenótipo , Seleção Genética
2.
J Exp Biol ; 226(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728626

RESUMO

During feeding trips, central-place foragers make decisions on whether to feed at a single site, move to other sites and/or exploit different habitats. However, for many marine species, the lack of fine-resolution data on foraging behaviour and success has hampered our ability to test whether individuals follow predictions of the optimal foraging hypothesis. Here, we tested how benthic foraging habitat usage, time spent at feeding sites and probability of change of feeding sites affected feeding rates in European shags (Gulosus aristotelis) using time-depth-acceleration data loggers in 24 chick-rearing males. Foraging habitat (rocky or sandy) was identified from characteristic differences in dive patterns and body angle. Increase in body mass was estimated from changes in wing stroke frequency during flights. Bout feeding rate (increase in body mass per unit time of dive bout) did not differ between rocky and sandy habitats, or in relation to the order of dive bouts during trips. Bout feeding rates did not affect the duration of flight to the next feeding site or whether the bird switched habitat. However, the likelihood of a change in habitat increased with the number of dive bouts within a trip. Our findings that shags did not actively move further or switch habitats after they fed at sites of lower quality are in contrast to the predictions of optimal foraging theory. Instead, it would appear that birds feed probabilistically in habitats where prey capture rates vary as a result of differences in prey density and conspecific competition or facilitation.


Assuntos
Mergulho , Comportamento Alimentar , Humanos , Masculino , Animais , Ecossistema , Galinhas , Probabilidade
3.
J Anim Ecol ; 92(8): 1622-1638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212614

RESUMO

Climate warming can reduce food resources for animal populations. In species exhibiting parental care, parental effort is a 'barometer' of changes in environmental conditions. A key issue is the extent to which variation in parental effort can buffer demographic rates against environmental change. Seabirds breed in large, dense colonies and globally are major predators of small fish that are often sensitive to ocean warming. We explored the causes and consequences of annual variation in parental effort as indicated by standardised checks of the proportions of chicks attended by both, one or neither parent, in a population of common guillemots Uria aalge over four decades during which there was marked variation in marine climate and chick diet. We predicted that, for parental effort to be an effective buffer, there would be a link between environmental conditions and parental effort, but not between parental effort and demographic rates. Environmental conditions influenced multiple aspects of the prey delivered by parents to their chicks with prey species, length and energy density all influenced by spring sea surface temperature (sSST) in the current and/or previous year. Overall, the mean annual daily energy intake of chicks declined significantly when sSST in the current year was higher. In accordance with our first prediction, we found that parental effort increased with sSST in the current and previous year. However, the increase was insufficient to maintain chick daily energy intake. In contrast to our second prediction, we found that increased parental effort had major demographic consequences such that growth rate and fledging success of chicks, and body mass and overwinter survival of breeding adults all decreased significantly. Common guillemot parents were unable to compensate effectively for temperature-mediated variation in feeding conditions through behavioural flexibility, resulting in immediate consequences for breeding population size because of lower adult survival and potentially longer-term impacts on recruitment because of lower productivity. These findings highlight that a critical issue for species' responses to future climate change will be the extent to which behavioural buffering can offer resilience to deteriorating environmental conditions.


Assuntos
Charadriiformes , Animais , Comportamento Alimentar/fisiologia , Peixes , Dieta , Densidade Demográfica
4.
J Anim Ecol ; 92(3): 774-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36633069

RESUMO

Actuarial senescence, the decline of survival with age, is well documented in the wild. Rates of senescence vary widely between taxa, to some extent also between sexes, with the fastest life histories showing the highest rates of senescence. Few studies have investigated differences in senescence among populations of the same species, although such variation is expected from population-level differences in environmental conditions, leading to differences in vital rates and thus life histories. We predict that, within species, populations differing in productivity (suggesting different paces of life) should experience different rates of senescence, but with little or no sexual difference in senescence within populations of monogamous, monomorphic species where the sexes share breeding duties. We compared rates of actuarial senescence among three contrasting populations of the Atlantic puffin Fratercula arctica. The dataset comprised 31 years (1990-2020) of parallel capture-mark-recapture data from three breeding colonies, Isle of May (North Sea), Røst (Norwegian Sea) and Hornøya (Barents Sea), showing contrasting productivities (i.e. annual breeding success) and population trends. We used time elapsed since first capture as a proxy for bird age, and productivity and the winter North Atlantic Oscillation Index (wNAO) as proxies for the environmental conditions experienced by the populations within and outside the breeding season, respectively. In accordance with our predictions, we found that senescence rates differed among the study populations, with no evidence for sexual differences. There was no evidence for an effect of wNAO, but the population with the lowest productivity, Røst, showed the lowest rate of senescence. As a consequence, the negative effect of senescence on the population growth rate (λ) was up to 3-5 times smaller on Røst (Δλ = -0.009) than on the two other colonies. Our findings suggest that environmentally induced differences in senescence rates among populations of a species should be accounted for when predicting effects of climate variation and change on species persistence. There is thus a need for more detailed information on how both actuarial and reproductive senescence influence vital rates of populations of the same species, calling for large-scale comparative studies.


Assuntos
Charadriiformes , Animais , Envelhecimento , Aves , Clima , Estações do Ano
5.
J Anim Ecol ; 91(4): 752-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157312

RESUMO

Density-dependent regulation can offer resilience to wild populations experiencing fluctuations in environmental conditions because, at lower population sizes, the average quality of habitats or resources is predicted to increase. Site-dependent regulation is a mechanism whereby individuals breed at the highest quality, most successful, sites, leaving poorer quality, less successful sites vacant. As population size increases, higher quality sites become limiting but when populations decline, lower quality sites are vacated first, offering resilience. This process is known as the 'buffer effect'. However, few studies have tested whether such regulation operates in populations experiencing changes in size and trend. We used data from a population of common guillemots Uria aalge, a colonially breeding seabird, to investigate the relationship between site occupancy probability, site quality and population size and trend. These data were collected at five sub-colonies spanning a 38-year period (1981-2018) comprising phases of population increase, decrease and recovery. We first tested whether site quality and population size in sub-colonies explained which sites were occupied for breeding, and if this was robust to changes in sub-colony trend. We then investigated whether disproportionate use of higher quality sites drove average site quality and breeding success across sub-colony sizes and trends. Finally, we tested whether individuals consistently occupied higher quality sites during periods of decline and recovery. Higher quality sites were disproportionality used when sub-colony size was smaller, resulting in higher average site quality and breeding success at lower population sizes. This relationship was unaffected by changes in sub-colony trend. However, contrary to the predictions of the buffer effect, new sites were established at a similar rate to historically occupied sites during sub-colony decline and recovery despite being of lower quality. Our results provide support for the buffer effect conferring resilience to populations, such that average breeding success was consistently higher at lower population size during all phases of population change. However, this process was tempered by the continued establishment of new, lower quality, sites which could act to slow population recovery after periods when colony size was low.


Assuntos
Charadriiformes , Animais , Charadriiformes/fisiologia , Ecossistema , Densidade Demográfica
6.
J Anim Ecol ; 91(12): 2384-2399, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177549

RESUMO

Understanding how ecological processes combine to shape population dynamics is crucial in a rapidly changing world. Evidence has been emerging for how fundamental drivers of density dependence in mobile species are related to two differing types of environmental variation-temporal variation in climate, and spatiotemporal variation in food resources. However, to date, tests of these hypotheses have been largely restricted to mid-trophic species in terrestrial environments and thus their general applicability remains unknown. We tested if these same processes can be identified in marine upper trophic level species. We assembled a multi-decadal data set on population abundance of 10 species of colonial seabirds comprising a large component of the UK breeding seabird biomass, and covering diverse phylogenies, life histories and foraging behaviours. We tested for evidence of density dependence in population growth rates using discrete time state-space population models fit to long time-series of observations of abundance at seabird breeding colonies. We then assessed if the strength of density dependence in population growth rates was exacerbated by temporal variation in climate (sea temperature and swell height), and attenuated by spatiotemporal variation in prey resources (productivity and tidal fronts). The majority of species showed patterns consistent with temporal variation in climate acting to strengthen density dependent feedbacks to population growth. However, fewer species showed evidence for a weakening of density dependence with increasing spatiotemporal variation in prey resources. Our findings extend this emerging theory for how different sources of environmental variation may shape the dynamics and regulation of animal populations, demonstrating its role in upper trophic marine species. We show that environmental variation leaves a signal in long-term population dynamics of seabirds with potentially important consequences for their demography and trophic interactions.


Assuntos
Crescimento Demográfico , Animais , Dinâmica Populacional
7.
J Anim Ecol ; 91(9): 1781-1796, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35633181

RESUMO

Among-individual and within-individual variation in expression of seasonal migration versus residence is widespread in nature and could substantially affect the dynamics of partially migratory metapopulations inhabiting seasonally and spatially structured environments. However, such variation has rarely been explicitly incorporated into metapopulation dynamic models for partially migratory systems. We, therefore, lack general frameworks that can identify how variable seasonal movements, and associated season- and location-specific vital rates, can control system persistence. We constructed a novel conceptual framework that captures full-annual-cycle dynamics and key dimensions of metapopulation structure for partially migratory species inhabiting seasonal environments. We conceptualize among-individual variation in seasonal migration as two variable vital rates: seasonal movement probability and associated movement survival probability. We conceptualize three levels of within-individual variation (i.e. plasticity), representing seasonal or annual variation in seasonal migration or lifelong fixed strategies. We formulate these concepts as a general matrix model, which is customizable for diverse life-histories and seasonal landscapes. To illustrate how variable seasonal migration can affect metapopulation growth rate, demographic structure and vital rate elasticities, we parameterize our general models for hypothetical short- and longer-lived species. Analyses illustrate that elasticities of seasonal movement probability and associated survival probability can sometimes equal or exceed those of vital rates typically understood to substantially influence metapopulation dynamics (i.e. seasonal survival probability or fecundity), that elasticities can vary non-linearly, and that metapopulation outcomes depend on the level of within-individual plasticity. We illustrate how our general framework can be applied to evaluate the consequences of variable and changing seasonal movement probability by parameterizing our models for a real partially migratory metapopulation of European shags Gulosus aristotelis assuming lifelong fixed strategies. Given observed conditions, metapopulation growth rate was most elastic to breeding season adult survival of the resident fraction in the dominant population. However, given doubled seasonal movement probability, variation in survival during movement would become the primary driver of metapopulation dynamics. Our general conceptual and matrix model frameworks, and illustrative analyses, thereby highlight complex ways in which structured variation in seasonal migration can influence dynamics of partially migratory metapopulations, and pave the way for diverse future theoretical and empirical advances.


Assuntos
Aves , Movimento , Migração Animal/fisiologia , Animais , Aves/fisiologia , Ecossistema , Dinâmica Populacional , Probabilidade , Estações do Ano
8.
J Anim Ecol ; 91(9): 1797-1812, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675093

RESUMO

Timing of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations. We combined 51 long-term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small-scale region, large-scale region and the whole North Atlantic. In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small-scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales. In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter-year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black-legged kittiwake Rissa tridactyla was the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver. Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.


Assuntos
Charadriiformes , Animais , Mudança Climática , Estações do Ano
9.
Nature ; 535(7611): 241-5, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27362222

RESUMO

Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).


Assuntos
Mudança Climática/estatística & dados numéricos , Ecossistema , Animais , Organismos Aquáticos , Clima , Conjuntos de Dados como Assunto , Previsões , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura , Fatores de Tempo , Reino Unido
10.
Proc Biol Sci ; 288(1951): 20210404, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34004132

RESUMO

Quantifying temporal variation in sex-specific selection on key ecologically relevant traits, and quantifying how such variation arises through synergistic or opposing components of survival and reproductive selection, is central to understanding eco-evolutionary dynamics, but rarely achieved. Seasonal migration versus residence is one key trait that directly shapes spatio-seasonal population dynamics in spatially and temporally varying environments, but temporal dynamics of sex-specific selection have not been fully quantified. We fitted multi-event capture-recapture models to year-round ring resightings and breeding success data from partially migratory European shags (Phalacrocorax aristotelis) to quantify temporal variation in annual sex-specific selection on seasonal migration versus residence arising through adult survival, reproduction and the combination of both (i.e. annual fitness). We demonstrate episodes of strong and strongly fluctuating selection through annual fitness that were broadly synchronized across females and males. These overall fluctuations arose because strong reproductive selection against migration in several years contrasted with strong survival selection against residence in years with extreme climatic events. These results indicate how substantial phenotypic and genetic variation in migration versus residence could be maintained, and highlight that biologically important fluctuations in selection may not be detected unless both survival selection and reproductive selection are appropriately quantified and combined.


Assuntos
Migração Animal , Reprodução , Animais , Aves , Feminino , Masculino , Dinâmica Populacional , Estações do Ano , Seleção Genética
11.
J Anim Ecol ; 90(4): 796-808, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33340099

RESUMO

Elucidating the full eco-evolutionary consequences of climate change requires quantifying the impact of extreme climatic events (ECEs) on selective landscapes of key phenotypic traits that mediate responses to changing environments. Episodes of strong ECE-induced selection could directly alter population composition, and potentially drive micro-evolution. However, to date, few studies have quantified ECE-induced selection on key traits, meaning that immediate and longer-term eco-evolutionary implications cannot yet be considered. One widely expressed trait that allows individuals to respond to changing seasonal environments, and directly shapes spatio-seasonal population dynamics, is seasonal migration versus residence. Many populations show considerable among-individual phenotypic variation, resulting in 'partial migration'. However, variation in the magnitude of direct survival selection on migration versus residence has not been rigorously quantified, and empirical evidence of whether seasonal ECEs induce, intensify, weaken or reverse such selection is lacking. We designed full annual cycle multi-state capture-recapture models that allow estimation of seasonal survival probabilities of migrants and residents from spatio-temporally heterogeneous individual resightings. We fitted these models to 9 years of geographically extensive year-round resighting data from partially migratory European shags Phalacrocorax aristotelis. We thereby quantified seasonal and annual survival selection on migration versus residence across benign and historically extreme non-breeding season (winter) conditions, and tested whether selection differed between females and males. We show that two of four observed ECEs, defined as severe winter storms causing overall low survival, were associated with very strong seasonal survival selection against residence. These episodes dwarfed the weak selection or neutrality evident otherwise, and hence caused selection through overall annual survival. The ECE that caused highest overall mortality and strongest selection also caused sex-biased mortality, but there was little overall evidence of sex-biased selection on migration versus residence. Our results imply that seasonal ECEs and associated mortality can substantially shape the landscape of survival selection on migration versus residence. Such ECE-induced phenotypic selection will directly alter migrant and resident frequencies, and thereby alter immediate spatio-seasonal population dynamics. Given underlying additive genetic variation, such ECEs could potentially cause micro-evolutionary changes in seasonal migration, and thereby cause complex eco-evolutionary population responses to changing seasonal environments.


Assuntos
Aves , Mudança Climática , Migração Animal , Animais , Feminino , Fenótipo , Dinâmica Populacional , Estações do Ano
12.
J Anim Ecol ; 90(2): 432-446, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33070317

RESUMO

As temperatures rise, timing of reproduction is changing at different rates across trophic levels, potentially resulting in asynchrony between consumers and their resources. The match-mismatch hypothesis (MMH) suggests that trophic asynchrony will have negative impacts on average productivity of consumers. It is also thought to lead to selection on timing of breeding, as the most asynchronous individuals will show the greatest reductions in fitness. Using a 30-year individual-level dataset of breeding phenology and success from a population of European shags on the Isle of May, Scotland, we tested a series of predictions consistent with the hypothesis that fitness impacts of trophic asynchrony are increasing. These predictions quantified changes in average annual breeding success and strength of selection on timing of breeding, over time and in relation to rising sea surface temperature (SST) and diet composition. Annual average (population) breeding success was negatively correlated with average lay date yet showed no trend over time, or in relation to increasing SST or the proportion of principal prey in the diet, as would be expected if trophic mismatch was increasing. At the individual level, we found evidence for stabilising selection and directional selection for earlier breeding, although the earliest birds were not the most productive. However, selection for earlier laying did not strengthen over time, or in relation to SST or slope of the seasonal shift in diet from principal to secondary prey. We found that the optimum lay date advanced by almost 4 weeks during the study, and that the population mean lay date tracked this shift. Our results indicate that average performance correlates with absolute timing of breeding of the population, and there is selection for earlier laying at the individual level. However, we found no fitness signatures of a change in the impact of climate-induced trophic mismatch, and evidence that shags are tracking long-term shifts in optimum timing. This suggests that if asynchrony is present in this system, breeding success is not impacted. Our approach highlights the advantages of examining variation at both population and individual levels when assessing evidence for fitness impacts of trophic asynchrony.


Assuntos
Aves , Mudança Climática , Animais , Reprodução , Escócia , Estações do Ano
13.
Proc Biol Sci ; 287(1931): 20200928, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32693718

RESUMO

Within-individual and among-individual variation in expression of key environmentally sensitive traits, and associated variation in fitness components occurring within and between years, determine the extents of phenotypic plasticity and selection and shape population responses to changing environments. Reversible seasonal migration is one key trait that directly mediates spatial escape from seasonally deteriorating environments, causing spatio-seasonal population dynamics. Yet, within-individual and among-individual variation in seasonal migration versus residence, and dynamic associations with subsequent reproductive success, have not been fully quantified. We used novel capture-mark-recapture mixture models to assign individual European shags (Phalacrocorax aristotelis) to 'resident', 'early migrant', or 'late migrant' strategies in two consecutive years, using year-round local resightings. We demonstrate substantial among-individual variation in strategy within years, and directional within-individual change between years. Furthermore, subsequent reproductive success varied substantially among strategies, and relationships differed between years; residents and late migrants had highest success in the 2 years, respectively, matching the years in which these strategies were most frequently expressed. These results imply that migratory strategies can experience fluctuating reproductive selection, and that flexible expression of migration can be partially aligned with reproductive outcomes. Plastic seasonal migration could then potentially contribute to adaptive population responses to currently changing forms of environmental seasonality.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Animais , Feminino , Masculino , Fenótipo , Dinâmica Populacional , Reprodução/fisiologia , Estações do Ano
14.
Biol Lett ; 15(10): 20190634, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31640526

RESUMO

A global analysis recently showed that seabird breeding phenology (as the timing of egg-laying and hatching) does not, on average, respond to temperature changes or advance with time (Keogan et al. 2018 Nat. Clim. Change8, 313-318). This group, the most threatened of all birds, is therefore prone to spatio-temporal mismatches with their food resources. Yet, other aspects of the breeding phenology may also have a marked influence on breeding success, such as the arrival date of adults at the breeding site following winter migration. Here, we used a large tracking dataset of two congeneric seabirds breeding in 14 colonies across 18° latitudes, to show that arrival date at the colony was highly variable between colonies and species (ranging 80 days) and advanced 1.4 days/year while timing of egg-laying remained unchanged, resulting in an increasing pre-laying duration between 2009 and 2018. Thus, we demonstrate that potentially not all components of seabird breeding phenology are insensitive to changing environmental conditions.


Assuntos
Charadriiformes , Animais , Aves , Feminino , Oviposição , Parto , Gravidez , Estações do Ano
15.
Arch Environ Contam Toxicol ; 75(4): 545-556, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30232531

RESUMO

Situated at high positions on marine food webs, seabirds accumulate high concentrations of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), and hexachlorocyclohexanes (HCHs). Our previous studies proposed the usefulness of seabirds preen gland oil as a nondestructive biomonitoring tool. The present study applied this approach to 154 adult birds of 24 species collected from 11 locations during 2005-2016 to demonstrate the utility of preen gland oil as a tool for global monitoring POPs, i.e., PCBs, DDTs, and HCHs. Concentrations of the POPs were higher in the Northern Hemisphere than in the Southern Hemisphere. In particular, ∑20PCBs and∑DDTs were highly concentrated in European shags (Phalacrocorax aristotelis) and Japanese cormorants (Phalacrocorax capillatus), explainable by a diet of benthic fishes. Higher concentrations of γ-HCH were detected in species from the polar regions, possibly reflecting the recent exposure and global distillation of ∑HCHs. We examined the relationship between age and POP concentrations in preen gland oil from 20 male European shags, aged 3-16 years old. Concentrations and compositions of POPs were not related to age. We also examined sex differences in the POP concentrations from 24 streaked shearwaters (Calonectris leucomelas) and did not detect a sex bias. These results underline the importance of the geographic concentration patterns and the dietary behavior as determinants species-specific POPs concentrations in preen gland oil.


Assuntos
Aves , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Óleos/análise , Compostos Orgânicos/análise , Fatores Etários , Animais , DDT/análise , Feminino , Peixes , Cadeia Alimentar , Hexaclorocicloexano/análise , Hidrocarbonetos Clorados/análise , Masculino , Óleos/química , Bifenilos Policlorados/análise , Glândulas Sebáceas/química , Fatores Sexuais
16.
Mol Ecol ; 26(10): 2796-2811, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28028864

RESUMO

Geographically separated populations tend to be less connected by gene flow, as a result of physical or nonphysical barriers preventing dispersal, and this can lead to genetic structure. In this context, highly mobile organisms such as seabirds are interesting because the small effect of physical barriers means nonphysical ones may be relatively more important. Here, we use microsatellite and mitochondrial data to explore the genetic structure and phylogeography of Atlantic and Mediterranean populations of a European endemic seabird, the European shag, Phalacrocorax aristotelis, and identify the primary drivers of their diversification. Analyses of mitochondrial markers revealed three phylogenetic lineages grouping the North Atlantic, Spanish/Corsican and eastern Mediterranean populations, apparently arising from fragmentation during the Pleistocene followed by range expansion. These traces of historical fragmentation were also evident in the genetic structure estimated by microsatellite markers, despite significant contemporary gene flow among adjacent populations. Stronger genetic structure, probably promoted by landscape, philopatry and local adaptation, was found among distant populations and those separated by physical and ecological barriers. This study highlights the enduring effect of Pleistocene climatic changes on shag populations, especially within the Mediterranean Basin, and suggests a role for cryptic northern refugia, as well as known southern refugia, on the genetic structure of European seabirds. Finally, it outlines how contemporary ecological barriers and behavioural traits may maintain population divergence, despite long-distance dispersal triggered by extreme environmental conditions (e.g. population crashes).


Assuntos
Aves/genética , Genética Populacional , Filogenia , Animais , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Repetições de Microssatélites , Filogeografia , Análise de Sequência de DNA
17.
Ecol Appl ; 27(7): 2074-2091, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28653410

RESUMO

Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the distribution at sea of each species at both the colony and regional level. Space use by all four species' British breeding populations is concentrated in the coastal waters of Scotland, highlighting the need for robust conservation measures in this area. The techniques we present are applicable to any CCPF.


Assuntos
Distribuição Animal , Aves/fisiologia , Comportamento Alimentar , Comportamento de Nidação , Animais , Charadriiformes/fisiologia , Irlanda , Modelos Biológicos , Densidade Demográfica , Reino Unido
18.
J Anim Ecol ; 86(5): 1010-1021, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502109

RESUMO

Quantifying among-individual variation in life-history strategies, and associated variation in reproductive performance and resulting demographic structure, is key to understanding and predicting population dynamics and life-history evolution. Partial migration, where populations comprise a mixture of resident and seasonally migrant individuals, constitutes a dimension of life-history variation that could be associated with substantial variation in reproductive performance. However, such variation has rarely been quantified due to the challenge of measuring reproduction and migration across a sufficient number of seasonally mobile males and females. We used intensive winter (non-breeding season) resightings of colour-ringed adult European shags (Phalacrocorax aristotelis) from a known breeding colony to identify resident and migrant individuals. We tested whether two aspects of annual reproductive performance, brood hatch date and breeding success, differed between resident and migrant males, females and breeding pairs observed across three consecutive winters and breeding seasons. The sex ratios of observed resident and migrant shags did not significantly differ from each other or from 1:1, suggesting that both sexes are partially migratory and that migration was not sex-biased across surveyed areas. Individual resident males and females hatched their broods 6 days earlier and fledged 0.2 more chicks per year than migrant males and females on average. Resident individuals of both sexes therefore had higher breeding success than migrants. Hatch date and breeding success also varied with a pair's joint migratory strategy such that resident-resident pairs hatched their broods 12 days earlier than migrant-migrant pairs, and fledged 0.7 more chicks per year on average. However, there was no evidence of assortative pairing with respect to migratory strategy: observed frequencies of migrant-migrant and resident-resident pairs did not differ from those expected given random pairing. These data demonstrate substantial variation in two key aspects of reproductive performance associated with the migratory strategies of males, females and breeding pairs within a partially migratory population. These patterns could reflect direct and/or indirect mechanisms, but imply that individual variation in migratory strategy and variation in pairing among residents and migrants could influence selection on migration and drive complex population and evolutionary dynamics.


Assuntos
Migração Animal , Aves , Reprodução , Animais , Feminino , Masculino , Estações do Ano
19.
J Exp Biol ; 219(Pt 3): 311-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26847559

RESUMO

Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight.


Assuntos
Aves/fisiologia , Voo Animal , Vento , Acelerometria , Animais , Sistemas de Informação Geográfica , Masculino
20.
J Anim Ecol ; 84(6): 1490-6, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26283625

RESUMO

There is growing interest in the effects of wind on wild animals, given evidence that wind speeds are increasing and becoming more variable in some regions, particularly at temperate latitudes. Wind may alter movement patterns or foraging ability, with consequences for energy budgets and, ultimately, demographic rates. These effects are expected to vary among individuals due to intrinsic factors such as sex, age or feeding proficiency. Furthermore, this variation is predicted to become more marked as wind conditions deteriorate, which may have profound consequences for population dynamics as the climate changes. However, the interaction between wind and intrinsic effects has not been comprehensively tested. In many species, in particular those showing sexual size dimorphism, males and females vary in foraging performance. Here, we undertook year-round deployments of data loggers to test for interactions between sex and wind speed and direction on foraging effort in adult European shags Phalacrocorax aristotelis, a pursuit-diving seabird in which males are c. 18% heavier. We found that foraging time was lower at high wind speeds but higher during easterly (onshore) winds. Furthermore, there was an interaction between sex and wind conditions on foraging effort, such that females foraged for longer than males when winds were of greater strength (9% difference at high wind speeds vs. 1% at low wind speeds) and when winds were easterly compared with westerly (7% and 4% difference, respectively). The results supported our prediction that sex-specific differences in foraging effort would become more marked as wind conditions worsen. Since foraging time is linked to demographic rates in this species, our findings are likely to have important consequences for population dynamics by amplifying sex-specific differences in survival rates.


Assuntos
Aves/fisiologia , Comportamento Alimentar , Vento , Animais , Feminino , Masculino , Escócia , Estações do Ano , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA