Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 26(1): 97-105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972708

RESUMO

Extracranial arteriovenous malformation (AVM) is a congenital vascular anomaly causing disfigurement, bleeding, ulceration, and pain. Most lesions are associated with somatic MAP2K1 activating mutations in endothelial cells (ECs). The purpose of this study was to determine if EC expression of mutant activated MAP2K1 is sufficient to produce vascular malformations in mice. We generated mice with a ROSA26 allele containing a lox-stop-lox gene trap (GT), Map2k1 cDNA with an activating p.K57N missense mutation, an internal ribosomal entry site, and green fluorescent protein cDNA (R26GT-Map2k1-GFP). We expressed mutant MAP2K1 and GFP in ECs of fetal and newborn mice using Tg-Cdh5Cre or Tg-Cdh5CreER alleles. Tg-Cdh5Cre+/-;R26GT-Map2k1-GFP/+ animals that express mutant MAP2K1 in ECs in utero developed diffuse vascular abnormalities and died by embryonic (E) day 16.5. Tg-Cdh5CreER+/-;R26GT-Map2k1-GFP/+ animals in which mutant MAP2K1 expression was induced in ECs by tamoxifen at postnatal (P) day 1 developed vascular malformations in the brain, ear, and intestines by P23. The lesions consisted of abnormal networks of blood vessels containing recombined and non-recombined ECs. In conclusion, expression of MAP2K1 p.K57N is sufficient to cause vascular malformations in mice. This model can be used to study the malformation process and for pre-clinical pharmacologic studies.


Assuntos
Malformações Arteriovenosas , Malformações Vasculares , Animais , Camundongos , Células Endoteliais/metabolismo , DNA Complementar/metabolismo , Mutação/genética , Malformações Arteriovenosas/genética , Malformações Vasculares/patologia
2.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31932352

RESUMO

Evolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor (csf1r) function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts. We demonstrate the retention of two functional paralogues of csf1r in zebrafish. Mutant analysis indicates that the paralogues have shared, non-redundant roles in regulating osteoclast activity during the formation of the adult skeleton. csf1ra, however, has adopted unique roles in pigment cell patterning not seen in the second paralogue. We identify a unique noncoding element within csf1ra of fishes that is sufficient for controlling gene expression in pigment cells during development. As a role for Csf1r signaling in pigmentation is not observed in mammals or birds, it is likely that the overlapping roles of the two paralogues released functional constraints on csf1ra, allowing the signaling capacity of Csf1r to serve a novel function in the evolution of pigment pattern in fishes.


Assuntos
Desenvolvimento Embrionário , Proteínas Tirosina Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Osso e Ossos/metabolismo , Dentição , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Pigmentação/genética , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Ann Rheum Dis ; 82(12): 1547-1557, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37679035

RESUMO

OBJECTIVES: Progressive pseudorheumatoid arthropathy of childhood (PPAC), caused by deficiency of WNT1 inducible signalling pathway protein 3 (WISP3), has been challenging to study because no animal model of the disease exists and cartilage recovered from affected patients is indistinguishable from common end-stage osteoarthritis. Therefore, to gain insights into why precocious articular cartilage failure occurs in this disease, we made in vitro derived articular cartilage using isogenic WISP3-deficient and WISP3-sufficient human pluripotent stem cells (hPSCs). METHODS: We generated articular cartilage-like tissues from induced-(i) PSCs from two patients with PPAC and one wild-type human embryonic stem cell line in which we knocked out WISP3. We compared these tissues to in vitro-derived articular cartilage tissues from two isogenic WISP3-sufficient control lines using histology, bulk RNA sequencing, single cell RNA sequencing and in situ hybridisation. RESULTS: WISP3-deficient and WISP3-sufficient hPSCs both differentiated into articular cartilage-like tissues that appeared histologically similar. However, the transcriptomes of WISP3-deficient tissues differed significantly from WISP3-sufficient tissues and pointed to increased TGFß, TNFα/NFκB, and IL-2/STAT5 signalling and decreased oxidative phosphorylation. Single cell sequencing and in situ hybridisation revealed that WISP3-deficient cartilage contained a significantly higher fraction (~4 fold increase, p<0.001) of superficial zone chondrocytes compared with deeper zone chondrocytes than did WISP3-sufficient cartilage. CONCLUSIONS: WISP3-deficient and WISP3-sufficient hPSCs can be differentiated into articular cartilage-like tissues, but these tissues differ in their transcriptomes and in the relative abundances of chondrocyte subtypes they contain. These findings provide important starting points for in vivo studies when an animal model of PPAC or presymptomatic patient-derived articular cartilage becomes available.


Assuntos
Cartilagem Articular , Células-Tronco Pluripotentes , Animais , Humanos , Cartilagem Articular/metabolismo , Mutação , Condrócitos/metabolismo , Diferenciação Celular/genética
4.
Am J Med Genet A ; 191(5): 1164-1209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36779427

RESUMO

The "Nosology of genetic skeletal disorders" has undergone its 11th revision and now contains 771 entries associated with 552 genes reflecting advances in molecular delineation of new disorders thanks to advances in DNA sequencing technology. The most significant change as compared to previous versions is the adoption of the dyadic naming system, systematically associating a phenotypic entity with the gene it arises from. We consider this a significant step forward as dyadic naming is more informative and less prone to errors than the traditional use of list numberings and eponyms. Despite the adoption of dyadic naming, efforts have been made to maintain strong ties to the MIM catalog and its historical data. As with the previous versions, the list of disorders and genes in the Nosology may be useful in considering the differential diagnosis in the clinic, directing bioinformatic analysis of next-generation sequencing results, and providing a basis for novel advances in biology and medicine.

5.
PLoS Genet ; 16(5): e1008361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463812

RESUMO

Osteocalcin (OCN), the most abundant noncollagenous protein in the bone matrix, is reported to be a bone-derived endocrine hormone with wide-ranging effects on many aspects of physiology, including glucose metabolism and male fertility. Many of these observations were made using an OCN-deficient mouse allele (Osc-) in which the 2 OCN-encoding genes in mice, Bglap and Bglap2, were deleted in ES cells by homologous recombination. Here we describe mice with a new Bglap and Bglap2 double-knockout (dko) allele (Bglap/2p.Pro25fs17Ter) that was generated by CRISPR/Cas9-mediated gene editing. Mice homozygous for this new allele do not express full-length Bglap or Bglap2 mRNA and have no immunodetectable OCN in their serum. FTIR imaging of cortical bone in these homozygous knockout animals finds alterations in the collagen maturity and carbonate to phosphate ratio in the cortical bone, compared with wild-type littermates. However, µCT and 3-point bending tests do not find differences from wild-type littermates with respect to bone mass and strength. In contrast to the previously reported OCN-deficient mice with the Osc-allele, serum glucose levels and male fertility in the OCN-deficient mice with the Bglap/2pPro25fs17Ter allele did not have significant differences from wild-type littermates. We cannot explain the absence of endocrine effects in mice with this new knockout allele. Possible explanations include the effects of each mutated allele on the transcription of neighboring genes, or differences in genetic background and environment. So that our findings can be confirmed and extended by other interested investigators, we are donating this new Bglap and Bglap2 double-knockout strain to the Jackson Laboratories for academic distribution.


Assuntos
Sistema Endócrino/fisiologia , Osteocalcina/genética , Animais , Densidade Óssea/genética , Osso e Ossos/metabolismo , Sistema Endócrino/metabolismo , Feminino , Fertilidade/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocalcina/deficiência
6.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564437

RESUMO

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Assuntos
Chaperonas Moleculares/genética , Mutação , Osteogênese Imperfeita/genética , Animais , Feminino , Genes Recessivos , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Linhagem , Fenótipo , Via de Sinalização Wnt
7.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29180569

RESUMO

Inactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by Trip11) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect. A possible explanation for the tissue specificity of ACG1A is that cartilage and bone are highly secretory tissues with a high use of the membrane trafficking machinery. The perinatal lethality of ACG1A prevents investigating this hypothesis. We therefore generated mice with conditional Trip11 knockout alleles and inactivated Trip11 in chondrocytes, osteoblasts, osteoclasts and pancreas acinar cells, all highly secretory cell types. We discovered that the ACG1A skeletal phenotype is solely due to absence of GMAP-210 in chondrocytes. Mice lacking GMAP-210 in osteoblasts, osteoclasts and acinar cells were normal. When we inactivated Trip11 in primary chondrocyte cultures, GMAP-210 deficiency affected trafficking of a subset of chondrocyte-expressed proteins rather than globally impairing membrane trafficking. Thus, GMAP-210 is essential for trafficking specific cargoes in chondrocytes but is dispensable in other highly secretory cells.


Assuntos
Acondroplasia , Alelos , Desenvolvimento Ósseo/genética , Cartilagem , Fenótipo , Acondroplasia/genética , Acondroplasia/metabolismo , Acondroplasia/patologia , Animais , Transporte Biológico Ativo/genética , Cartilagem/anormalidades , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Proteínas do Citoesqueleto , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia
8.
Am J Hum Genet ; 100(3): 546-554, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190454

RESUMO

Arteriovenous malformation (AVM) is a fast-flow, congenital vascular anomaly that may arise anywhere in the body. AVMs typically progress, causing destruction of surrounding tissue and, sometimes, cardiac overload. AVMs are difficult to control; they often re-expand after embolization or resection, and pharmacologic therapy is unavailable. We studied extracranial AVMs in order to identify their biological basis. We performed whole-exome sequencing (WES) and whole-genome sequencing (WGS) on AVM tissue from affected individuals. Endothelial cells were separated from non-endothelial cells by immune-affinity purification. We used droplet digital PCR (ddPCR) to confirm mutations found by WES and WGS, to determine whether mutant alleles were enriched in endothelial or non-endothelial cells, and to screen additional AVM specimens. In seven of ten specimens, WES and WGS detected and ddPCR confirmed somatic mutations in mitogen activated protein kinase kinase 1 (MAP2K1), the gene that encodes MAP-extracellular signal-regulated kinase 1 (MEK1). Mutant alleles were enriched in endothelial cells and were not present in blood or saliva. 9 of 15 additional AVM specimens contained mutant MAP2K1 alleles. Mutations were missense or small in-frame deletions that affect amino acid residues within or adjacent to the protein's negative regulatory domain. Several of these mutations have been found in cancers and shown to increase MEK1 activity. In summary, somatic mutations in MAP2K1 are a common cause of extracranial AVM. The likely mechanism is endothelial cell dysfunction due to increased MEK1 activity. MEK1 inhibitors, which are approved to treat several forms of cancer, are potential therapeutic agents for individuals with extracranial AVM.


Assuntos
Malformações Arteriovenosas/genética , MAP Quinase Quinase 1/genética , Mutação , Adolescente , Adulto , Idoso , Alelos , Sequência de Bases , Criança , Pré-Escolar , Células Endoteliais/metabolismo , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise de Sequência de DNA , Adulto Jovem
9.
Angiogenesis ; 22(4): 547-552, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31486960

RESUMO

BACKGROUND: The term "intramuscular hemangioma capillary type" (IHCT) refers to a fast-flow vascular lesion that is classified as a tumor, although its phenotype overlaps with arteriovenous malformation (AVM). The purpose of this study was to identify somatic mutations in IHCT. METHODS: Affected tissue specimens were obtained during a clinically indicated procedure. The diagnosis of IHCT was based on history, physical examination, imaging and histopathology. Because somatic mutations in cancer-associated genes can cause vascular malformations, we sequenced exons from 446 cancer-related genes in DNA from 7 IHCT specimens. We then performed mutation-specific droplet digital PCR (ddPCR) to independently test for the presence of a somatic mutation found by sequencing and to screen one additional IHCT sample. RESULTS: We detected somatic mutations in 6 of 8 IHCT specimens. Four specimens had a mutation in MAP2K1 (p.Q58_E62del, p.P105_I107delinsL, p.Q56P) and 2 specimens had mutations in KRAS (p.K5E and p.G12D, p.G12D and p.Q22R). Mutant allele frequencies detected by sequencing and confirmed by ddPCR ranged from 2 to 15%. CONCLUSIONS: IHCT lesions are phenotypically similar to AVMs and contain the same somatic MAP2K1 or KRAS mutations, suggesting that IHCT is on the AVM spectrum. We propose calling this lesion "intramuscular fast-flow vascular anomaly."


Assuntos
Hemangioma/genética , MAP Quinase Quinase 1/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Malformações Arteriovenosas/enzimologia , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Hemangioma/enzimologia , Hemangioma/patologia , Humanos , MAP Quinase Quinase 1/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
10.
Hum Genet ; 138(11-12): 1419-1421, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31637524

RESUMO

The majority of extracranial arteriovenous malformations (AVMs) are caused by somatic mutations in MAP2K1. We report a somatic HRAS mutation in a patient who has a facial AVM associated with subcutaneous adipose overgrowth. We performed whole exome sequencing on DNA from the affected tissue and found a HRAS mutation (p.Thr58_Ala59delinsValLeuAspVal). Mutant allelic frequency was 5% in whole tissue and 31% in isolated endothelial cells (ECs); the mutation was not present in blood DNA or non-ECs. Somatic mutations in HRAS can cause AVM.


Assuntos
Malformações Arteriovenosas/genética , Malformações Arteriovenosas/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Criança , Feminino , Humanos , Prognóstico
11.
Am J Hum Genet ; 98(4): 789-95, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058448

RESUMO

Congenital hemangioma is a rare vascular tumor that forms in utero. Postnatally, the tumor either involutes quickly (i.e., rapidly involuting congenital hemangioma [RICH]) or partially regresses and stabilizes (i.e., non-involuting congenital hemangioma [NICH]). We hypothesized that congenital hemangiomas arise due to somatic mutation and performed massively parallel mRNA sequencing on affected tissue from eight participants. We identified mutually exclusive, mosaic missense mutations that alter glutamine at amino acid 209 (Glu209) in GNAQ or GNA11 in all tested samples, at variant allele frequencies (VAF) ranging from 3% to 33%. We verified the presence of the mutations in genomic DNA using a combination of molecular inversion probe sequencing (MIP-seq) and digital droplet PCR (ddPCR). The Glu209 GNAQ and GNA11 missense variants we identified are common in uveal melanoma and have been shown to constitutively activate MAPK and/or YAP signaling. When we screened additional archival formalin-fixed paraffin-embedded (FFPE) congenital cutaneous and hepatic hemangiomas, 4/8 had GNAQ or GNA11 Glu209 variants. The same GNAQ or GNA11 mutation is found in both NICH and RICH, so other factors must account for these tumors' different postnatal behaviors.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Hemangioma/genética , Melanoma/genética , Anormalidades da Pele/genética , Neoplasias Uveais/genética , Adolescente , Criança , Pré-Escolar , Feminino , Frequência do Gene , Variação Genética , Hemangioma/diagnóstico , Humanos , Lactente , Masculino , Melanoma/diagnóstico , Mutação de Sentido Incorreto , RNA Mensageiro/genética , Análise de Sequência de RNA , Transdução de Sinais , Anormalidades da Pele/diagnóstico , Neoplasias Uveais/diagnóstico
12.
Am J Med Genet A ; 179(12): 2393-2419, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633310

RESUMO

The application of massively parallel sequencing technology to the field of skeletal disorders has boosted the discovery of the underlying genetic defect for many of these diseases. It has also resulted in the delineation of new clinical entities and the identification of genes and pathways that had not previously been associated with skeletal disorders. These rapid advances have prompted the Nosology Committee of the International Skeletal Dysplasia Society to revise and update the last (2015) version of the Nosology and Classification of Genetic Skeletal Disorders. This newest and tenth version of the Nosology comprises 461 different diseases that are classified into 42 groups based on their clinical, radiographic, and/or molecular phenotypes. Remarkably, pathogenic variants affecting 437 different genes have been found in 425/461 (92%) of these disorders. By providing a reference list of recognized entities and their causal genes, the Nosology should help clinicians achieve accurate diagnoses for their patients and help scientists advance research in skeletal biology.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/genética , Alelos , Estudos de Associação Genética/métodos , Humanos , Padrões de Herança , Fenótipo , Guias de Prática Clínica como Assunto
13.
Am J Hum Genet ; 96(3): 480-6, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25728774

RESUMO

Verrucous venous malformation (VVM), also called "verrucous hemangioma," is a non-hereditary, congenital, vascular anomaly comprised of aberrant clusters of malformed dermal venule-like channels underlying hyperkeratotic skin. We tested the hypothesis that VVM lesions arise as a consequence of a somatic mutation. We performed whole-exome sequencing (WES) on VVM tissue from six unrelated individuals and looked for somatic mutations affecting the same gene in specimens from multiple persons. We observed mosaicism for a missense mutation (NM_002401.3, c.1323C>G; NP_002392, p.Iso441Met) in mitogen-activated protein kinase kinase kinase 3 (MAP3K3) in three of six individuals. We confirmed the presence of this mutation via droplet digital PCR (ddPCR) in the three subjects and found the mutation in three additional specimens from another four participants. Mutant allele frequencies ranged from 6% to 19% in affected tissue. We did not observe this mutant allele in unaffected tissue or in affected tissue from individuals with other types of vascular anomalies. Studies using global and conditional Map3k3 knockout mice have previously implicated MAP3K3 in vascular development. MAP3K3 dysfunction probably causes VVM in humans.


Assuntos
MAP Quinase Quinase Quinase 3/genética , Neoplasias Cutâneas/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Ceratose/genética , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Mutação de Sentido Incorreto , Adulto Jovem
15.
FASEB J ; 31(3): 1067-1084, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27965322

RESUMO

Articular cartilage has little regenerative capacity. Recently, genetic lineage tracing experiments have revealed chondrocyte progenitors at the articular surface. We further characterized these progenitors by using in vivo genetic approaches. Histone H2B-green fluorescent protein retention revealed that superficial cells divide more slowly than underlying articular chondrocytes. Clonal genetic tracing combined with immunohistochemistry revealed that superficial cells renew their number by symmetric division, express mesenchymal stem cell markers, and generate chondrocytes via both asymmetric and symmetric differentiation. Quantitative analysis of cellular kinetics, in combination with phosphotungstic acid-enhanced micro-computed tomography, showed that superficial cells generate chondrocytes and contribute to the growth and reshaping of articular cartilage. Furthermore, we found that cartilage renewal occurs as the progeny of superficial cells fully replace fetal chondrocytes during early postnatal life. Thus, superficial cells are self-renewing progenitors that are capable of maintaining their own population and fulfilling criteria of unipotent adult stem cells. Furthermore, the progeny of these cells reconstitute adult articular cartilage de novo, entirely substituting fetal chondrocytes.-Li, L., Newton, P. T., Bouderlique, T., Sejnohova, M., Zikmund, T., Kozhemyakina, E., Xie, M., Krivanek, J., Kaiser, J., Qian, H., Dyachuk, V., Lassar, A. B., Warman, M. L., Barenius, B., Adameyko, I., Chagin, A. S. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice.


Assuntos
Células-Tronco Adultas/citologia , Cartilagem Articular/citologia , Condrócitos/citologia , Condrogênese , Animais , Cartilagem Articular/fisiologia , Camundongos , Regeneração
17.
Angiogenesis ; 20(3): 303-306, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28120216

RESUMO

BACKGROUND: Capillary malformation is a cutaneous vascular anomaly that is present at birth, darkens over time, and can cause overgrowth of tissues beneath the stain. The lesion is caused by a somatic activating mutation in GNAQ. In a previous study, we were unable to identify a GNAQ mutation in patients with a capillary malformation involving an overgrown lower extremity. We hypothesized that mutations in GNA11 or GNA14, genes closely related to GNAQ, also may cause capillary malformations. METHODS: Human capillary malformation tissue obtained from 8 patients that had tested negative for GNAQ mutations were studied. Lesions involved an extremity (n = 7) or trunk (n = 1). Droplet digital PCR (ddPCR) was used to detect GNA11 or GNA14 mutant cells (p.Arg183) in the specimens. Single molecule molecular inversion probe sequencing (smMIP-seq) was performed to search for other mutations in GNA11. Mutations were validated by subcloning and sequencing amplimers. RESULTS: We found a somatic GNA11 missense mutation (c.547C > T; p.Arg183Cys) in 3 patients with a diffuse capillary malformation of an extremity. Mutant allelic frequencies ranged from 0.3 to 5.0%. GNA11 or GNA14 mutations were not found in 5 affected tissues or in unaffected tissues (white blood cell DNA). CONCULSIONS: GNA11 mutations are associated with extremity capillary malformations causing overgrowth. Pharmacotherapy that affects GNA11 signaling may prevent the progression of capillary malformations.


Assuntos
Capilares/anormalidades , Extremidades/patologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Mutação/genética , Malformações Vasculares/genética , Adolescente , Adulto , Sequência de Bases , Criança , Feminino , Humanos , Masculino , Adulto Jovem
18.
Pediatr Res ; 82(5): 850-854, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28665924

RESUMO

BackgroundFacial infiltrating lipomatosis (FIL) is a congenital disorder that causes overgrowth of one side of the face. The purpose of this study was to determine whether PIK3CA mutations are present in tissues outside of the subcutaneous adipose.MethodsFIL tissues from three patients were dissected to enrich for cells from skin, subcutaneous tissue, orbicularis oris muscle, buccal fat, zygomatic bone, and mucosal neuroma. Endothelial cells within the affected tissue also were enriched using CD31 microbeads. Laser capture microdissection on formalin-fixed paraffin-embedded histologic sections was performed to collect specific cell types. DNA was extracted from each tissue and cell type, and measured for the abundance of mutant PIK3CA alleles using droplet digital PCR.ResultsWe detected mutant PIK3CA alleles in every tissue and cell type tested from each overgrown face; frequencies ranged from 1.5 to 53%. There were fewer mutant endothelial cells compared with nonendothelial cells, and the stromal cell compartment had the highest frequency of mutant cells in each tissue.ConclusionsPIK3CA mutations are not restricted to a single tissue or cell type in FIL. Overgrowth in this condition is likely due to the mutation arising in a cell that contributes to several different facial structures during embryogenesis.


Assuntos
Adiposidade/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Lipomatose/genética , Mutação , Gordura Subcutânea/patologia , Adipócitos/enzimologia , Adipócitos/patologia , Adolescente , Biópsia , Criança , Pré-Escolar , Análise Mutacional de DNA , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Face , Feminino , Predisposição Genética para Doença , Humanos , Hipertrofia , Lipomatose/diagnóstico , Lipomatose/enzimologia , Lipomatose/patologia , Imageamento por Ressonância Magnética , Masculino , Taxa de Mutação , Fenótipo , Células Estromais/enzimologia , Células Estromais/patologia , Gordura Subcutânea/enzimologia
19.
PLoS Genet ; 10(5): e1004364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875294

RESUMO

Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC) patients causes benign cartilage tumors on the bone surface (exostoses) and within bones (enchondromas). To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the data are consistent with paracrine signaling from SHP2-deficient cells causing SHP2-sufficient cells to be incorporated into the lesions.


Assuntos
Cartilagem/metabolismo , Diferenciação Celular/genética , Comunicação Parácrina/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Cartilagem/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese/genética , Condroma/genética , Condroma/patologia , Condromatose/genética , Condromatose/patologia , Exostose/genética , Exostose/patologia , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/patologia , Lâmina de Crescimento , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Osteogênese/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(15): 5852-7, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530215

RESUMO

Osteoarthritis is a complex disease involving the mechanical breakdown of articular cartilage in the presence of altered joint mechanics and chondrocyte death, but the connection between these factors is not well established. Lubricin, a mucinous glycoprotein encoded by the PRG4 gene, provides boundary lubrication in articular joints. Joint friction is elevated and accompanied by accelerated cartilage damage in humans and mice that have genetic deficiency of lubricin. Here, we investigated the relationship between coefficient of friction and chondrocyte death using ex vivo and in vitro measurements of friction and apoptosis. We observed increases in whole-joint friction and cellular apoptosis in lubricin knockout mice compared with wild-type mice. When we used an in vitro bovine explant cartilage-on-cartilage bearing system, we observed a direct correlation between coefficient of friction and chondrocyte apoptosis in the superficial layers of cartilage. In the bovine explant system, the addition of lubricin as a test lubricant significantly lowered the static coefficient of friction and number of apoptotic chondrocytes. These results demonstrate a direct connection between lubricin, boundary lubrication, and cell survival and suggest that supplementation of synovial fluid with lubricin may be an effective treatment to prevent cartilage deterioration in patients with genetic or acquired deficiency of lubricin.


Assuntos
Apoptose , Condrócitos/patologia , Glicoproteínas/fisiologia , Proteoglicanas/fisiologia , Animais , Cartilagem/metabolismo , Caspase 3/metabolismo , Bovinos , Adesão Celular , Sobrevivência Celular , Genótipo , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Osteoartrite/patologia , Osteoartrite/terapia , Proteoglicanas/genética , Resistência ao Cisalhamento , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA