Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Audiol Neurootol ; 26(4): 287-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647905

RESUMO

INTRODUCTION: The Vibrant Soundbridge (MED-EL Medical Electronics, Austria) is an active middle ear implant with a floating mass transducer (FMT) for patients with conductive, sensorineural, or mixed hearing loss. While the FMT is vertically aligned above the stapes head (SH) with the current Vibroplasty Clip coupler (MED-EL Medical Electronics), the new SH coupler was developed to mount the FMT on the inferior side of the stapes and to fit in the reduced middle ear space after canal-wall-down mastoidectomy. METHODS: Using 11 human cadaveric temporal bones (TBs), placements of the new SH couplers on the stapes were examined, and effective stimuli to the cochlea were evaluated by measuring piston-like motion of the stapes footplate with a current of 1 mA on the FMT. The results were assessed in comparison with the Vibroplasty Clip coupler. RESULTS: The new SH coupler showed perfect coupling on the stapes in 9 out of 11 TBs. A small gap between the SH and the plate of the connection link part was unavoidable in 2 TBs but had negligible effect on vibrational motion of the stapes. Vibrational motion of the stapes with the new SH coupler was reduced at frequencies above 3 kHz compared to the corresponding motion with the current Vibroplasty Clip coupler, but the relative attenuation over all 11 cadaveric temporal bones was <10 dB. CONCLUSIONS: The new SH coupler provides an alternative with more stable fixation when placement of the current Vibroplasty Clip coupler is limited due to insufficient space after canal-wall-down mastoidectomy, while still delivering effective stimuli to the cochlea.


Assuntos
Perda Auditiva Condutiva-Neurossensorial Mista , Prótese Ossicular , Orelha Média , Humanos , Bigorna/cirurgia , Estribo
2.
Hear Res ; 406: 108272, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34038827

RESUMO

The incudo-malleal joint (IMJ) in the human middle ear is a true diarthrodial joint and it has been known that the flexibility of this joint does not contribute to better middle-ear sound transmission. Previous studies have proposed that a gliding motion between the malleus and the incus at this joint prevents the transmission of large displacements of the malleus to the incus and stapes and thus contributes to the protection of the inner ear as an immediate response against large static pressure changes. However, dynamic behavior of this joint under static pressure changes has not been fully revealed. In this study, effects of the flexibility of the IMJ on middle-ear sound transmission under static pressure difference between the middle-ear cavity and the environment were investigated. Experiments were performed in human cadaveric temporal bones with static pressures in the range of +/- 2 kPa being applied to the ear canal (relative to middle-ear cavity). Vibrational motions of the umbo and the stapes footplate center in response to acoustic stimulation (0.2-8 kHz) were measured using a 3D-Laser Doppler vibrometer for (1) the natural IMJ and (2) the IMJ with experimentally-reduced flexibility. With the natural condition of the IMJ, vibrations of the umbo and the stapes footplate center under static pressure loads were attenuated at low frequencies below the middle-ear resonance frequency as observed in previous studies. After the flexibility of the IMJ was reduced, additional attenuations of vibrational motion were observed for the umbo under positive static pressures in the ear canal (EC) and the stapes footplate center under both positive and negative static EC pressures. The additional attenuation of vibration reached 4~7 dB for the umbo under positive static EC pressures and the stapes footplate center under negative EC pressures, and 7~11 dB for the stapes footplate center under positive EC pressures. The results of this study indicate an adaptive mechanism of the flexible IMJ in the human middle ear to changes of static EC pressure by reducing the attenuation of the middle-ear sound transmission. Such results are expected to be used for diagnosis of the IMJ stiffening and to be applied to design of middle-ear prostheses.


Assuntos
Orelha Média , Martelo , Humanos , Bigorna , Pressão , Som , Estribo , Osso Temporal , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA