Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Plant Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478427

RESUMO

4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: class I 4CLs involved in lignin metabolism, class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated. In this study, we demonstrated the requirement of 4CL for shikonin biosynthesis using a 4CL-specific inhibitor. In silico analysis of the L. erythrorhizon genome revealed the presence of at least eight 4CL genes, among which the expression of three (Le4CL3, Le4CL4, and Le4CL5) showed a positive association with shikonin production. Phylogenetic analysis indicated that Le4CL5 belongs to class I 4CLs, while Le4CL3 and Le4CL4 belong to clades that are distant from class I and class II. Interestingly, both Le4CL3 and Le4CL4 have peroxisome targeting signal 1 in their C-terminal region, and subcellular localization analysis revealed that both localize to the peroxisome. We targeted each of the three Le4CL genes by CRISPR/Cas9-mediated mutagenesis and observed remarkably lower shikonin production in Le4CL3-ge and Le4CL4-ge genome-edited lines compared with the vector control. We therefore conclude that peroxisomal Le4CL3 and Le4CL4 are responsible for shikonin production and propose a model for metabolite-specific 4CL distribution in L. erythrorhizon.

2.
Plant J ; 113(3): 562-575, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534115

RESUMO

The phenylpropene volatiles dillapiole and apiole impart one of the characteristic aromas of dill (Anethum graveolens) weeds. However, very few studies have been conducted to investigate the chemical composition of volatile compounds from different developmental stages and plant parts of A. graveolens. In this study, we examined the distribution of volatile phenylpropenes, including dillapiole, in dill plants at various developmental stages. We observed that young dill seedlings accumulate high levels of dillapiole and apiole, whereas a negligible proportion was found in the flowering plants and dry seeds. Based on transcriptomics and co-expression approaches with phenylpropene biosynthesis genes, we identified dill cDNA encoding S-adenosyl-L-methionine-dependent O-methyltransferase 1 (AgOMT1), an enzyme that can convert 6- and 2-hydroxymyristicin to dillapiole and apiole, respectively, via the methylation of the ortho-hydroxy group. The AgOMT1 protein shows an apparent Km value of 3.5 µm for 6-hydroxymyristicin and is 75% identical to the anise (Pimpinella anisum) O-methyltransferase (PaAIMT1) that can convert isoeugenol to methylisoeugenol via methylation of the hydroxy group at the para-position of the benzene ring. AgOMT1 showed a preference for 6-hydroxymyristicin, whereas PaAIMT1 displayed a large preference for isoeugenol. In vitro mutagenesis experiments demonstrated that substituting only a few residues can substantially affect the substrate specificity of these enzymes. Other plants belonging to the Apiaceae family contained homologous O-methyltransferase (OMT) proteins highly similar to AgOMT1, converting 6-hydroxymyristicin to dillapiole. Our results indicate that apiaceous phenylpropene OMTs with ortho-methylating activity evolved independently of phenylpropene OMTs of other plants and the enzymatic function of AgOMT1 and PaAIMT1 diverged recently.


Assuntos
Anethum graveolens , Anethum graveolens/química , Anethum graveolens/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
3.
Plant Cell Physiol ; 64(6): 637-645, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36947436

RESUMO

Aurones constitute one of the major classes of flavonoids, with a characteristic furanone structure that acts as the C-ring of flavonoids. Members of various enzyme families are involved in aurone biosynthesis in different higher plants, suggesting that during evolution plants acquired the ability to biosynthesize aurones independently and convergently. Bryophytes also produce aurones, but the biosynthetic pathways and enzymes involved have not been determined. The present study describes the identification and characterization of a polyphenol oxidase (PPO) that acts as an aureusidin synthase (MpAS1) in the model liverwort, Marchantia polymorpha. Crude enzyme assays using an M. polymorpha line overexpressing MpMYB14 with high accumulation of aureusidin showed that aureusidin was biosynthesized from naringenin chalcone and converted to riccionidin A. This activity was inhibited by N-phenylthiourea, an inhibitor specific to enzymes of the PPO family. Of the six PPOs highly induced in the line overexpressing MpMyb14, one, MpAS1, was found to biosynthesize aureusidin from naringenin chalcone when expressed in Saccharomyces cerevisiae. MpAS1 also recognized eriodictyol chalcone, isoliquiritigenin and butein, showing the highest activity for eriodictyol chalcone. Members of the PPO family in M. polymorpha evolved independently from PPOs in higher plants, indicating that aureusidin synthases evolved in parallel in land plants.


Assuntos
Chalconas , Marchantia , Catecol Oxidase/genética , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Marchantia/genética , Marchantia/metabolismo , Flavonoides
4.
Plant J ; 108(1): 81-92, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273198

RESUMO

Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Solanina/análogos & derivados , Solanum tuberosum/genética , 4-Aminobutirato Transaminase/genética , Edição de Genes , Hidroxilação , Cetocolesteróis/biossíntese , Cetocolesteróis/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/fisiologia , Saponinas/biossíntese , Saponinas/química , Solanina/química , Solanina/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologia
5.
Plant Cell Physiol ; 63(7): 981-990, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35560060

RESUMO

Cultivated tomato (Solanum lycopersicum) contains α-tomatine, a steroidal glycoalkaloid (SGA), which functions as a defense compound to protect against pathogens and herbivores; interestingly, wild species in the tomato clade biosynthesize a variety of SGAs. In cultivated tomato, the metabolic detoxification of α-tomatine during tomato fruit ripening is an important trait that aided in its domestication, and two distinct 2-oxoglutarate-dependent dioxygenases (DOXs), a C-23 hydroxylase of α-tomatine (Sl23DOX) and a C-27 hydroxylase of lycoperoside C (Sl27DOX), are key to this process. There are tandemly duplicated DOX genes on tomato chromosome 1, with high levels of similarity to Sl23DOX. While these DOX genes are rarely expressed in cultivated tomato tissues, the recombinant enzymes of Solyc01g006580 and Solyc01g006610 metabolized α-tomatine to habrochaitoside A and (20R)-20-hydroxytomatine and were therefore named as habrochaitoside A synthase (HAS) and α-tomatine 20-hydroxylase (20DOX), respectively. Furthermore, 20DOX and HAS exist in the genome of wild tomato S. habrochaites accession LA1777, which accumulates habrochaitoside A in its fruits, and their expression patterns were in agreement with the SGA profiles in LA1777. These results indicate that the functional divergence of α-tomatine-metabolizing DOX enzymes results from gene duplication and the neofunctionalization of catalytic activity and gene expression, and this contributes to the structural diversity of SGAs in the tomato clade.


Assuntos
Dioxigenases , Solanum lycopersicum , Dioxigenases/metabolismo , Frutas/genética , Frutas/metabolismo , Duplicação Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxigenases de Função Mista/genética
6.
Plant Physiol ; 184(2): 753-761, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32727911

RESUMO

Several Boraginaceae plants produce biologically active red naphthoquinone pigments, derivatives of the enantiomers shikonin and alkannin, which vary in acyl groups on their side chains. Compositions of shikonin/alkannin derivatives vary in plant species, but the mechanisms generating the diversity of shikonin/alkannin derivatives are largely unknown. This study describes the identification and characterization of two BAHD acyltransferases, shikonin O-acyltransferase (LeSAT1) and alkannin O-acyltransferase (LeAAT1), from Lithospermum erythrorhizon, a medicinal plant in the family Boraginaceae that primarily produces the shikonin/alkannin derivatives acetylshikonin and ß-hydroxyisovalerylshikonin. Enzyme assays using Escherichia coli showed that the acylation activity of LeSAT1 was specific to shikonin, whereas the acylation activity of LeAAT1 was specific to alkannin. Both enzymes recognized acetyl-CoA, isobutyryl-CoA, and isovaleryl-CoA as acyl donors to produce their corresponding shikonin/alkannin derivatives, with both enzymes showing the highest activity for acetyl-CoA. These findings were consistent with the composition of shikonin/alkannin derivatives in intact L erythrorhizon plants and cell cultures. Genes encoding both enzymes were preferentially expressed in the roots and cell cultures in the dark in pigment production medium M9, conditions associated with shikonin/alkannin production. These results indicated that LeSAT1 and LeAAT1 are enantiomer-specific acyltransferases that generate various shikonin/alkannin derivatives.


Assuntos
Aciltransferases/metabolismo , Lithospermum/enzimologia , Naftoquinonas/metabolismo , Aciltransferases/genética , Escherichia coli , Lithospermum/genética , Especificidade por Substrato
7.
J Labelled Comp Radiopharm ; 64(10): 403-416, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34243219

RESUMO

Cinnamic acids are widely distributed in plants, including crops for human use, and exhibit a variety of activities that are beneficial to human health. They also occupy a pivotal position in the biosynthesis of phenylpropanoids such as lignins, anthocyanins, flavonoids, and coumarins. In this context, deuterium-labeled cinnamic acids have been used as tracers and internal standards in food and medicinal chemistry as well as plant biochemistry. Therefore, a concise synthesis of deuterium-labeled cinnamic acids would be highly desirable. In this study, we synthesized deuterium-labeled cinnamic acids using readily available deuterium sources. We also investigated a hydrogen-deuterium exchange reaction in an ethanol-d1 /Et3 N system. This method can introduce deuterium atoms at the ortho and para positions of the phenolic hydroxy groups as well as at the C-2 position of alkyl cinnamates and is applicable to various phenolic compounds. Using the synthesized labeled compounds, we demonstrated that the benzenoid volatiles, such as 4-methoxybenzaldehyde, in the scent of the flowers of the Japanese loquat Eriobotrya japonica are biosynthesized from phenylalanine via cinnamic and 4-coumaric acids. This study provides easy access to a variety of deuterium-labeled (poly)phenols, as well as to useful tools for studies of the metabolism of cinnamic acids in living systems.


Assuntos
Cinamatos/química , Deutério/química , Eriobotrya/química , Compostos Orgânicos Voláteis/metabolismo , Eriobotrya/metabolismo , Flores/química , Flores/metabolismo , Fenóis/química , Compostos Orgânicos Voláteis/química
8.
Plant Cell Physiol ; 61(1): 21-28, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816045

RESUMO

Tomato plants (Solanum lycopersicum) contain steroidal glycoalkaloid α-tomatine, which functions as a chemical barrier to pathogens and predators. α-Tomatine accumulates in all tissues and at particularly high levels in leaves and immature green fruits. The compound is toxic and causes a bitter taste, but its presence decreases through metabolic conversion to nontoxic esculeoside A during fruit ripening. This study identifies the gene encoding a 23-hydroxylase of α-tomatine, which is a key to this process. Some 2-oxoglutarate-dependent dioxygenases were selected as candidates for the metabolic enzyme, and Solyc02g062460, designated Sl23DOX, was found to encode α-tomatine 23-hydroxylase. Biochemical analysis of the recombinant Sl23DOX protein demonstrated that it catalyzes the 23-hydroxylation of α-tomatine and the product spontaneously isomerizes to neorickiioside B, which is an intermediate in α-tomatine metabolism that appears during ripening. Leaves of transgenic tomato plants overexpressing Sl23DOX accumulated not only neorickiioside B but also another intermediate, lycoperoside C (23-O-acetylated neorickiioside B). Furthermore, the ripe fruits of Sl23DOX-silenced transgenic tomato plants contained lower levels of esculeoside A but substantially accumulated α-tomatine. Thus, Sl23DOX functions as α-tomatine 23-hydroxylase during the metabolic processing of toxic α-tomatine in tomato fruit ripening and is a key enzyme in the domestication of cultivated tomatoes.


Assuntos
Oxigenases de Função Mista/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Paladar , Tomatina/análogos & derivados , Tomatina/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Metabólica , Solanum lycopersicum/genética , Oxigenases de Função Mista/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes
9.
Biosci Biotechnol Biochem ; 84(8): 1696-1705, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32404002

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritic and eczematous skin lesions. The skin of AD patients is generally in a dried condition. Therefore, it is important for AD patients to manage skin moisturization. In this study, we examined the effects of orally administered fermented barley extract P (FBEP), which is prepared from a supernatant of barley shochu distillery by-product, on stratum corneum (SC) hydration and transepidermal water loss (TEWL) in AD-like lesions induced in hairless mice using 2,4,6-trinitrochlorobenzene. Oral administration of FBEP increased SC hydration and decreased TEWL in the dorsal skin of this mouse model. Further fractionation of FBEP showed that a pyroglutamyl pentapeptide, pEQPFP comprising all -L-form amino acids, is responsible for these activities. These results suggested that this pyroglutamyl pentapeptide may serve as a modality for the treatment of AD.


Assuntos
Misturas Complexas/farmacologia , Dermatite Atópica/tratamento farmacológico , Epiderme/efeitos dos fármacos , Hordeum/química , Hipodermóclise/métodos , Oligopeptídeos/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Misturas Complexas/isolamento & purificação , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Modelos Animais de Doenças , Epiderme/patologia , Fermentação , Masculino , Camundongos , Camundongos Pelados , Oligopeptídeos/isolamento & purificação , Cloreto de Picrila/administração & dosagem , Ácido Pirrolidonocarboxílico/isolamento & purificação , Ácido Pirrolidonocarboxílico/farmacologia , Resultado do Tratamento
10.
Biosci Biotechnol Biochem ; 84(9): 1831-1838, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32456605

RESUMO

Lysophosphatidic acid acyltransferase is a phospholipid biosynthetic enzyme that introduces a fatty acyl group into the sn-2 position of phospholipids. Its substrate selectivity is physiologically important in defining the physicochemical properties of lipid membranes and modulating membrane protein function. However, it remains unclear how these enzymes recognize various fatty acids. Successful purification of bacterial lysophosphatidic acid acyltransferases (PlsCs) was recently reported and has paved a path for the detailed analysis of their reaction mechanisms. Here, we purified and characterized PlsC from the thermophilic bacterium Thermus thermophilus HB8. This integral membrane protein remained active even after solubilization and purification and showed reactivity toward saturated, unsaturated, and methyl-branched fatty acids, although branched-chain acyl groups are the major constituent of phospholipids of this bacterium. Multiple sequence alignment revealed the N-terminal end of the enzyme to be shorter than that of PlsCs with defined substrate selectivity, suggesting that the shortened N-terminus confers substrate promiscuity. ABBREVIATIONS: ACP: acyl carrier protein; CAPS: N-cyclohexyl-3-aminopropanesulfonic acid; CoA: coenzyme A; CYMAL-6: 6-cyclohexyl-1-hexyl-ß-D-maltoside; DDM: n-dodecyl-ß-D-maltoside; DTNB: 5,5´-dithiobis(2-nitrobenzoic acid); EPA: eicosapentaenoic acid; G3P: glycerol 3-phosphate; HEPES: N-2-hydroxyethylpiperazine-N´-2-ethanesulfonic acid; LPA: lysophosphatidic acid; MS: mass spectrometry; PA: phosphatidic acid.


Assuntos
Aciltransferases/metabolismo , Thermus thermophilus/enzimologia , Aciltransferases/química , Estabilidade Enzimática , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
11.
Biol Pharm Bull ; 42(11): 1947-1952, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31685777

RESUMO

GGsTop is a highly potent and specific, and irreversible γ-glutamyl transpeptidase (GGT) inhibitor without any influence on glutamine amidotransferases. The aim of the present study was to investigate the involvement of GGT in ischemia/reperfusion-induced cardiac dysfunction by assessing the effects of a treatment with GGsTop. Using a Langendorff apparatus, excised rat hearts underwent 40 min of global ischemia without irrigation and then 30 min of reperfusion. GGT activity was markedly increased in cardiac tissues exposed to ischemia, and was inhibited by the treatment with GGsTop. Exacerbation of cardiac functional parameters caused by ischemia and reperfusion, namely the reduction of left ventricular (LV) developed pressure and the maximum and negative minimum values of the first derivative of LV pressure, and the increment in LV end-diastolic pressure was significantly attenuated by GGsTop treatment. The treatment with GGsTop suppressed excessive norepinephrine release in the coronary perfusate, a marker for myocardial dysfunction, after ischemia/reperfusion. In addition, oxidative stress indicators in myocardium, including superoxide and malondialdehyde, after ischemia/reperfusion were significantly low in the presence of GGsTop. These observations demonstrate that enhanced GGT activity contributes to cardiac damage after myocardial ischemia/reperfusion, possibly via increased oxidative stress and subsequent norepinephrine overflow. GGT inhibitors have potential as a therapeutic strategy to prevent myocardial ischemia/reperfusion injury in vivo.


Assuntos
Aminobutiratos/farmacologia , Isquemia Miocárdica/fisiopatologia , Organofosfonatos/farmacologia , gama-Glutamiltransferase/antagonistas & inibidores , gama-Glutamiltransferase/fisiologia , Animais , Coração/fisiopatologia , Masculino , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo , gama-Glutamiltransferase/metabolismo
12.
Plant Physiol ; 175(1): 120-133, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28754839

RESUMO

Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites that are found in the Solanaceae. Potato (Solanum tuberosum) contains the SGAs α-solanine and α-chaconine, while tomato (Solanum lycopersicum) contains α-tomatine, all of which are biosynthesized from cholesterol. However, although two cytochrome P450 monooxygenases that catalyze the 22- and 26-hydroxylation of cholesterol have been identified, the 16-hydroxylase remains unknown. Feeding with deuterium-labeled cholesterol indicated that the 16α- and 16ß-hydrogen atoms of cholesterol were eliminated to form α-solanine and α-chaconine in potato, while only the 16α-hydrogen atom was eliminated in α-tomatine biosynthesis, suggesting that a single oxidation at C-16 takes place during tomato SGA biosynthesis while a two-step oxidation occurs in potato. Here, we show that a 2-oxoglutarate-dependent dioxygenase, designated as 16DOX, is involved in SGA biosynthesis. We found that the transcript of potato 16DOX (St16DOX) was expressed at high levels in the tuber sprouts, where large amounts of SGAs are accumulated. Biochemical analysis of the recombinant St16DOX protein revealed that St16DOX catalyzes the 16α-hydroxylation of hydroxycholesterols and that (22S)-22,26-dihydroxycholesterol was the best substrate among the nine compounds tested. St16DOX-silenced potato plants contained significantly lower levels of SGAs, and a detailed metabolite analysis revealed that they accumulated the glycosides of (22S)-22,26-dihydroxycholesterol. Analysis of the tomato 16DOX (Sl16DOX) gene gave essentially the same results. These findings clearly indicate that 16DOX is a steroid 16α-hydroxylase that functions in the SGA biosynthetic pathway. Furthermore, St16DOX silencing did not affect potato tuber yield, indicating that 16DOX may be a suitable target for controlling toxic SGA levels in potato.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Alcaloides de Solanáceas/biossíntese , Solanum lycopersicum/enzimologia , Solanum tuberosum/enzimologia , Esteroide 16-alfa-Hidroxilase/metabolismo , Deutério , Fenótipo , Plantas Geneticamente Modificadas
13.
Bioorg Med Chem ; 26(9): 2466-2474, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29685682

RESUMO

4-Coumaroyl-CoA ligase (4CL) is ubiquitous in the plant kingdom, and plays a central role in the biosynthesis of phenylpropanoids such as lignins, flavonoids, and coumarins. 4CL catalyzes the formation of the coenzyme A thioester of cinnamates such as 4-coumaric, caffeic, and ferulic acids, and the regulatory position of 4CL in the phenylpropanoid pathway renders the enzyme an attractive target that controls the composition of phenylpropanoids in plants. In this study, we designed and synthesized mechanism-based inhibitors for 4CL in order to develop useful tools for the investigation of physiological functions of 4CL and chemical agents that modulate plant growth with the ultimate goal to produce plant biomass that exhibits features that are beneficial to humans. The acylsulfamide backbone of the inhibitors in this study was adopted as a mimic of the acyladenylate intermediates in the catalytic reaction of 4CL. These acylsulfamide inhibitors and the important synthetic intermediates were fully characterized using two-dimensional NMR spectroscopy. Five 4CL proteins with distinct substrate specificity from four plant species, i.e., Arabidopsis thaliana, Glycine max (soybean), Populus trichocarpa (poplar), and Petunia hybrida (petunia), were used to evaluate the inhibitory activity, and the half-maximum inhibitory concentration (IC50) of each acylsulfamide in the presence of 4-coumaric acid (100 µM) was determined as an index of inhibitory activity. The synthetic acylsulfamides used in this study inhibited the 4CLs with IC50 values ranging from 0.10 to 722 µM, and the IC50 values of the most potent inhibitors for each 4CL were 0.10-2.4 µM. The structure-activity relationship observed in this study revealed that both the presence and the structure of the acyl group of the synthetic inhibitors strongly affect the inhibitory activity, and indicates that 4CL recognizes the acylsulfamide inhibitors as acyladenylate mimics.


Assuntos
Adenosina/análogos & derivados , Adenosina/química , Proteínas de Arabidopsis/antagonistas & inibidores , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/química , Sulfonamidas/química , Adenosina/síntese química , Arabidopsis/enzimologia , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Petunia/enzimologia , Populus/enzimologia , Glycine max/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfonamidas/síntese química
14.
Bioconjug Chem ; 28(8): 2077-2085, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28682621

RESUMO

Eicosapentaenoic acid (EPA) is an ω-3 polyunsaturated fatty acid that plays various beneficial roles in organisms from bacteria to humans. Although its beneficial physiological functions are well-recognized, a molecular probe that enables the monitoring of its in vivo behavior without abolishing its native functions has not yet been developed. Here, we designed and synthesized an ω-ethynyl EPA analog (eEPA) as a tool for analyzing the in vivo behavior and function of EPA. eEPA has an ω-ethynyl group tag in place of the ω-methyl group of EPA. An ethynyl group has a characteristic Raman signal and can be visualized by Raman scattering microscopy. Moreover, this group can specifically react in situ with azide compounds, such as those with fluorescent group, via click chemistry. In this study, we first synthesized eEPA efficiently based on the following well-known strategies. To introduce four C-C double bonds, a coupling reaction between terminal acetylene and propargylic halide or tosylate was employed, and then, by simultaneous and stereoselective partial hydrogenation with P-2 nickel, the triple bonds were converted to cis double bonds. One double bond and an ω-terminal C-C triple bond were introduced by Wittig reaction with a phosphonium salt harboring an ethynyl group. Then, we evaluated the in vivo function of the resulting probe by using an EPA-producing bacterium, Shewanella livingstonensis Ac10. This cold-adapted bacterium inducibly produces EPA at low temperatures, and the EPA-deficient mutant (ΔEPA) shows growth retardation and abnormal morphology at low temperatures. When eEPA was exogenously supplemented to ΔEPA, eEPA was incorporated into the membrane phospholipids as an acyl chain, and the amount of eEPA was about 5% of the total fatty acids in the membrane, which is comparable to the amount of EPA in the membrane of the parent strain. Notably, by supplementation with eEPA, the growth retardation and abnormal morphology of ΔEPA were almost completely suppressed. These results indicated that eEPA mimics EPA well and is useful for analyzing the in vivo behavior of EPA.


Assuntos
Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/síntese química , Sondas Moleculares/química , Sondas Moleculares/síntese química , Transporte Biológico , Técnicas de Química Sintética , Desenho de Fármacos , Ácido Eicosapentaenoico/metabolismo , Sondas Moleculares/metabolismo , Shewanella/metabolismo
15.
Bioorg Med Chem Lett ; 27(21): 4920-4924, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985998

RESUMO

2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon=174M-1s-1) was ca. 8-fold more potent than the d-isomer (kon=21.5M-1s-1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon=21.5-174M-1s-1), while the RP-isomers were inactive even at concentrations of 0.1mM.


Assuntos
Aminobutiratos/síntese química , Inibidores Enzimáticos/síntese química , Organofosfonatos/síntese química , gama-Glutamiltransferase/antagonistas & inibidores , Aminobutiratos/metabolismo , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Organofosfonatos/metabolismo , Ligação Proteica , Estereoisomerismo , gama-Glutamiltransferase/metabolismo
16.
Bioorg Med Chem ; 25(17): 4566-4578, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28751198

RESUMO

Brassinolide (BL) and castasterone (CS) are the representative members of brassinosteroid class of plant steroid hormone having plant growth promoting activity. In this study, eleven CS analogs bearing a variety of side chains were synthesized to determine the effect of the side chain structures on the BL-like activity. The plant hormonal activity was evaluated in a dwarf rice lamina inclination assay, and the potency was determined as the reciprocal logarithm of the 50% effective dose (ED50) from each dose-response curve. The reciprocal logarithm of ED50 (pED50) was decreased dramatically upon deletion of the C-28 methyl group of CS. The introduction of oxygen-containing groups such as hydroxy, methoxy, and ethoxycarbonyl was also unfavorable to the activity. The pED50 was influenced by the geometry of carbon-carbon double bond between C-24 and C-25 (cis and trans), but the introduction of a fluorine atom at the C-25 position of the double bond did not significantly change the activity. The binding free energy (ΔG) was calculated for all ligand-receptor binding interactions using molecular dynamics, resulting that ΔG is linearly correlated with the pED50.


Assuntos
Colestanóis/química , Reguladores de Crescimento de Plantas/química , Sítios de Ligação , Brassinosteroides/química , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Colestanóis/metabolismo , Colestanóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Esteroides Heterocíclicos/química , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia
17.
Biosci Biotechnol Biochem ; 81(12): 2253-2260, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027500

RESUMO

Fifteen steroidal saponins 1-15, which include 4 furostanol glycosides 1-3 and 15, and 11 spirostanol glycosides 4-14, were isolated from the tubers and leaves of lesser yam (Dioscorea esculenta, Togedokoro). Their structures were identified by nuclear magnetic resonance and liquid chromatography mass spectroscopy. Four steroidal saponins 9, 11, 14, and 15 were found to be novel compounds.


Assuntos
Dioscorea/química , Saponinas/química , Esteroides/química
18.
Proc Natl Acad Sci U S A ; 111(11): 4049-54, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591620

RESUMO

P-glycoprotein is an ATP-binding cassette multidrug transporter that actively transports chemically diverse substrates across the lipid bilayer. The precise molecular mechanism underlying transport is not fully understood. Here, we present crystal structures of a eukaryotic P-glycoprotein homolog, CmABCB1 from Cyanidioschyzon merolae, in two forms: unbound at 2.6-Å resolution and bound to a unique allosteric inhibitor at 2.4-Å resolution. The inhibitor clamps the transmembrane helices from the outside, fixing the CmABCB1 structure in an inward-open conformation similar to the unbound structure, confirming that an outward-opening motion is required for ATP hydrolysis cycle. These structures, along with site-directed mutagenesis and transporter activity measurements, reveal the detailed architecture of the transporter, including a gate that opens to extracellular side and two gates that open to intramembranous region and the cytosolic side. We propose that the motion of the nucleotide-binding domain drives those gating apparatuses via two short intracellular helices, IH1 and IH2, and two transmembrane helices, TM2 and TM5.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Descoberta de Drogas/métodos , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Neoplasias/tratamento farmacológico , Conformação Proteica , Rodófitas/química , Trifosfato de Adenosina/metabolismo , Cristalografia , Ativação do Canal Iônico/genética , Pichia , Saccharomyces cerevisiae , Difração de Raios X
19.
Bioorg Med Chem ; 24(21): 5340-5352, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27622749

RESUMO

γ-Glutamyl transpeptidase (GGT, EC 2.3.2.2) that catalyzes the hydrolysis and transpeptidation of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione metabolism and is an attractive pharmaceutical target. We report here the evaluation of a phosphonate-based irreversible inhibitor, 2-amino-4-{[3-(carboxymethyl)phenoxy](methoyl)phosphoryl}butanoic acid (GGsTop) and its analogues as a mechanism-based inhibitor of human GGT. GGsTop is a stable compound, but inactivated the human enzyme significantly faster than the other phosphonates, and importantly did not inhibit a glutamine amidotransferase. The structure-activity relationships, X-ray crystallography with Escherichia coli GGT, sequence alignment and site-directed mutagenesis of human GGT revealed a critical electrostatic interaction between the terminal carboxylate of GGsTop and the active-site residue Lys562 of human GGT for potent inhibition. GGsTop showed no cytotoxicity toward human fibroblasts and hepatic stellate cells up to 1mM. GGsTop serves as a non-toxic, selective and highly potent irreversible GGT inhibitor that could be used for various in vivo as well as in vitro biochemical studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Lisina/antagonistas & inibidores , Organofosfonatos/farmacologia , gama-Glutamiltransferase/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lisina/metabolismo , Modelos Moleculares , Estrutura Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Eletricidade Estática , Relação Estrutura-Atividade , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo
20.
Bioorg Med Chem Lett ; 25(18): 3910-3, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26235953

RESUMO

Fructosyl peptide oxidases (FPOXs) play a crucial role in the diagnosis of diabetes. Their main function is to cleave fructosyl amino acids or fructosyl peptides into glucosone and the corresponding amino acids/dipeptides. In this study, the substrate-analog FPOX inhibitors 1a-c were successfully designed and synthesized. These inhibitors mimic N(α)-fructosyl-L-valine (Fru-Val), [N(α)-fructosyl-L-valyl]-L-histidine (Fru-ValHis), and N(ε)-fructosyl-L-lysine (εFru-Lys), respectively. The secondary nitrogen atom in the natural substrates, linking fructose and amino acid or dipeptide moieties, was substituted in 1a-c with a sulfur atom to avoid enzymatic cleavage. Kinetic studies revealed that 1a-c act as competitive inhibitors against an FPOX obtained from Coniochaeta sp., and Ki values of 11.1, 66.8, and 782 µM were obtained for 1a-c, respectively.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Lisina/análogos & derivados , Valina/análogos & derivados , Aminoácido Oxirredutases/metabolismo , Ascomicetos/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Cinética , Lisina/síntese química , Lisina/química , Lisina/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Valina/síntese química , Valina/química , Valina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA