RESUMO
Understanding the changes affecting the plant cell wall is a key element in addressing its functional role in plant growth and in the response to stress. Pectins, which are the main constituents of the primary cell wall in dicot species, play a central role in the control of cellular adhesion and thereby of the rheological properties of the wall. This is likely to be a major determinant of plant growth. How the discrete changes in pectin structure are mediated is thus a key issue in our understanding of plant development and plant responses to changes in the environment. In particular, understanding the remodelling of homogalacturonan (HG), the most abundant pectic polymer, by specific enzymes is a current challenge in addressing its fundamental role. HG, a polymer that can be methylesterified or acetylated, can be modified by HGMEs (HG-modifying enzymes) which all belong to large multigenic families in all species sequenced to date. In particular, both the degrees of substitution (methylesterification and/or acetylation) and polymerization can be controlled by specific enzymes such as pectin methylesterases (PMEs), pectin acetylesterases (PAEs), polygalacturonases (PGs), or pectate lyases-like (PLLs). Major advances in the biochemical and functional characterization of these enzymes have been made over the last 10 years. This review aims to provide a comprehensive, up to date summary of the recent data concerning the structure, regulation, and function of these fascinating enzymes in plant development and in response to biotic stresses.
Assuntos
Pectinas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Esterases/metabolismo , Peso Molecular , Poligalacturonase/metabolismoRESUMO
Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.
Assuntos
Linho/crescimento & desenvolvimento , Linho/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcrição Gênica , Parede Celular/metabolismo , Endosperma/metabolismo , Ácidos Graxos/metabolismo , Linho/ultraestrutura , Giberelinas/metabolismo , Glucose/metabolismo , Endogamia , Cinética , Metabolômica , Fenótipo , Mucilagem Vegetal/ultraestrutura , Óleos de Plantas/metabolismo , Análise de Componente Principal , Recombinação Genética/genética , Sementes/ultraestrutura , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/genéticaRESUMO
We investigated whether plant ecotype might affect aphid performance and behavior. The probing behaviors of the polyphagous aphid Myzus persicae and the oligophagous aphid Brevicoryne brassicae on two ecotypes of Arabidopsis thaliana, WS and Col-0 were recorded using the direct current electrical penetration graph method (DC-EPG). Myzus persicae displayed a significant preference for the WS ecotype but was not greatly disturbed on Col-0, while B. brassicae discriminated between the two A. thaliana ecotypes, feeding less on WS than on Col-0. A Principal Component Analysis of aphid probing behavior data recorded on Col-0 and WS ecotypes showed that the one of M. persicae was positively correlated with the phloem ingestion phases while the one of B. brassicae was more related to nonfeeding phase. The survival of the aphid species was followed during early larval stages on the two ecotypes and a significantly higher mortality was observed of B. brassicae neonates compared to M. persicae, both reared on WS. Moreover, transcriptomic analysis of noninfested plant leaves from both ecotypes was monitored and underlined constitutive differences between Col-0 and WS gene expression that might explain the different aphid behaviors. Among a unigene set comprising 39 042 sequences for A. thaliana, 6% were differently expressed affecting, for example, the secondary metabolites and cell wall pathways: two third upregulated in WS and one third upregulated in Col-0. Thus, the "ecotype" variable should be taken into account when setting up a plant-insect experimental research.