Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 157(1): 151-61, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24679533

RESUMO

Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering.


Assuntos
Biologia Sintética , Animais , Bactérias/genética , Bactérias/metabolismo , Células/metabolismo , Engenharia Genética , História do Século XX , História do Século XXI , Engenharia Metabólica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Biologia Sintética/história , Biologia Sintética/métodos
2.
Mol Cell ; 63(2): 329-336, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27425413

RESUMO

Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling, and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use.


Assuntos
Escherichia coli/genética , Dosagem de Genes , Engenharia Genética/métodos , Genoma Bacteriano , Modelos Genéticos , Plasmídeos/genética , Biologia Sintética/métodos , Transcrição Gênica , Metabolismo Energético , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Repressores Lac/genética , Repressores Lac/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos/metabolismo , Processos Estocásticos
3.
Biochemistry ; 62(2): 178-186, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35984429

RESUMO

Natural systems use weak interactions and avidity effects to give biological systems high specificity and signal-to-noise ratios. Here we describe design principles for engineering fusion proteins that target therapeutic fusion proteins to membrane-bound signaling receptors by first binding to designer-chosen co-receptors on the same cell surface. The key design elements are separate protein modules, one that has no signaling activity and binds to a cell surface receptor with high affinity and a second that binds to a receptor with low or moderate affinity and carries out a desired signaling or inhibitory activity. These principles are inspired by natural cytokines such as CNTF, IL-2, and IL-4 that bind strongly to nonsignaling receptors and then signal through low-affinity receptors. Such designs take advantage of the fact that when a protein is anchored to a cell membrane, its local concentration is extremely high with respect to those of other membrane proteins, so a second-step, low-affinity binding event is favored. Protein engineers have used these principles to design treatments for cancer, anemia, hypoxia, and HIV infection.


Assuntos
Infecções por HIV , Interleucina-6 , Humanos , Interleucina-6/metabolismo , Citocinas , Transdução de Sinais , Engenharia de Proteínas
4.
Nucleic Acids Res ; 45(7): e50, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27980064

RESUMO

The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos , Saccharomyces cerevisiae/genética , Animais , Chlorocebus aethiops , Cromossomos , Cricetinae , Genoma Viral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Mitose/genética , Plasmídeos/genética , Células Vero
5.
Nucleic Acids Res ; 45(11): 6971-6980, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28499033

RESUMO

The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10-25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.


Assuntos
DNA Bacteriano/genética , Engenharia Genética/métodos , Salmonella typhimurium/genética , Códon , Genes Bacterianos , Genes Sintéticos , Genoma Bacteriano , Leucina/genética , Viabilidade Microbiana , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 113(19): 5245-50, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27114509

RESUMO

The design of cell-targeted protein therapeutics can be informed by natural protein-protein interactions that use cooperative physical contacts to achieve cell type specificity. Here we applied this approach in vivo to the anemia drug erythropoietin (EPO), to direct its activity to EPO receptors (EPO-Rs) on red blood cell (RBC) precursors and prevent interaction with EPO-Rs on nonerythroid cells, such as platelets. Our engineered EPO molecule was mutated to weaken its affinity for EPO-R, but its avidity for RBC precursors was rescued via tethering to an antibody fragment that specifically binds the human RBC marker glycophorin A (huGYPA). We systematically tested the impact of these engineering steps on in vivo markers of efficacy, side effects, and pharmacokinetics. huGYPA transgenic mice dosed with targeted EPO exhibited elevated RBC levels, with only minimal platelet effects. This in vivo selectivity depended on the weakening EPO mutation, fusion to the RBC-specific antibody, and expression of huGYPA. The terminal plasma half-life of targeted EPO was ∼28.3 h in transgenic mice vs. ∼15.5 h in nontransgenic mice, indicating that huGYPA on mature RBCs acted as a significant drug sink but did not inhibit efficacy. In a therapeutic context, our targeting approach may allow higher restorative doses of EPO without platelet-mediated side effects, and also may improve drug pharmacokinetics. These results demonstrate how rational drug design can improve in vivo specificity, with potential application to diverse protein therapeutics.


Assuntos
Anemia/sangue , Anemia/tratamento farmacológico , Eritropoetina/administração & dosagem , Terapia de Alvo Molecular/métodos , Engenharia de Proteínas/métodos , Receptores da Eritropoetina/metabolismo , Animais , Desenho de Fármacos , Eritropoese/efeitos dos fármacos , Eritropoese/fisiologia , Eritropoetina/genética , Eritropoetina/farmacocinética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão , Resultado do Tratamento
7.
Curr Genet ; 64(2): 327-333, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28983660

RESUMO

Full genome recoding, or rewriting codon meaning, through chemical synthesis of entire bacterial chromosomes has become feasible in the past several years. Recoding an organism can impart new properties including non-natural amino acid incorporation, virus resistance, and biocontainment. The estimated cost of construction that includes DNA synthesis, assembly by recombination, and troubleshooting, is now comparable to costs of early stage development of drugs or other high-tech products. Here, we discuss several recently published assembly methods and provide some thoughts on the future, including how synthetic efforts might benefit from the analysis of natural recoding processes and organisms that use alternative genetic codes.


Assuntos
DNA/biossíntese , Evolução Molecular , Genes Sintéticos/genética , Código Genético/genética , Códon/genética , DNA/genética , Escherichia coli/genética , Engenharia Genética , Genoma Bacteriano/genética
8.
Chembiochem ; 19(17): 1827-1833, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29931794

RESUMO

Steroids can be difficult to modify through traditional organic synthesis methods, but many enzymes regio- and stereoselectively process a wide variety of steroid substrates. We tested whether steroid-modifying enzymes could make novel steroids from non-native substrates. Numerous genes encoding steroid-modifying enzymes, including some bacterial enzymes, were expressed in mammalian cells by transient transfection and found to be active. We made three unusual steroids by stable expression, in HEK293 cells, of the 7α-hydroxylase CYP7B1, which was selected because of its high native product yield. These cells made 7α,17α-dihydroxypregnenolone and 7ß,17α-dihydroxypregnenolone from 17α-hydroxypregnenolone and produced 11α,16α-dihydroxyprogesterone from 16α-hydroxyprogesterone. The last two products were the result of CYP7B1-catalyzed hydroxylation at previously unobserved sites. A Rosetta docking model of CYP7B1 suggested that these substrates' D-ring hydroxy groups might prevent them from binding in the same way as the native substrates, bringing different carbon atoms close to the active ferryl oxygen atom. This new approach could potentially use other enzymes and substrates to produce many novel steroids for drug candidate testing.


Assuntos
Família 7 do Citocromo P450/metabolismo , Esteroide Hidroxilases/metabolismo , Esteroides/biossíntese , Domínio Catalítico , Engenharia Celular/métodos , Família 7 do Citocromo P450/química , Células HEK293 , Humanos , Hidroxilação , Simulação de Acoplamento Molecular , Ligação Proteica , Esteroide Hidroxilases/química , Esteroides/química , Esteroides/metabolismo , Especificidade por Substrato
9.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549102

RESUMO

Medium-chain fatty acids are commodity chemicals. Increasing and modifying the activity of thioesterases (TEs) on medium-chain fatty acyl-acyl carrier protein (acyl-ACP) esters may enable a high-yield microbial production of these molecules. The plant Cuphea palustris harbors two distinct TEs: C. palustris FatB1 (CpFatB1) (C8 specificity, lower activity) and CpFatB2 (C14 specificity, higher activity) with 78% sequence identity. We combined structural features from these two enzymes to create several chimeric TEs, some of which showed nonnatural fatty acid production as measured by an enzymatic assay and gas chromatography-mass spectrometry (GC-MS). Notably, chimera 4 exhibited an increased C8 fatty acid production in correlation with improved microbial expression. This chimera led us to identify CpFatB2-specific amino acids between positions 219 and 272 that lead to higher protein levels. Chimera 7 produced a broad range of fatty acids and appeared to combine a fatty acid binding pocket with long-chain specificity and an ACP interaction site that may activate fatty acid extrusion. Using homology modeling and in silico docking with ACP, we identified a "positive patch" within amino acids 162 to 218, which may direct the ACP interaction and regulate access to short-chain fatty acids. On the basis of this modeling, we transplanted putative ACP interaction sequences from CpFatB1 into CpFatB2 and created a chimeric thioesterase that produced medium-chain as well as long-chain fatty acids. Thus, the engineering of chimeric enzymes and characterizing their microbial activity and chain-length specificity suggested mechanistic insights into TE functions and also generated thioesterases with potentially useful properties. These observations may inform a rational engineering of TEs to allow alkyl chain length control.IMPORTANCE Medium-chain fatty acids are important commodity chemicals. These molecules are used as plastic precursors and in shampoos and other detergents and could be used as biofuel precursors if production economics were favorable. Hydrocarbon-based liquid fuels must be optimized to have a desired boiling point, low freezing point, low viscosity, and other physical characteristics. Similarly, the solubility and harshness of detergents and the flexibility of plastic polymers can be modulated. The length and distribution of the carbon chains in the hydrophobic tails determine these properties. The biological synthesis of cell membranes and fatty acids produces chains of primarily 16 to 18 carbons, which give rise to current biofuels. The ultimate goal of the work presented here is to engineer metabolic pathways to produce designer molecules with the correct number of carbons in a chain, so that such molecules could be used directly as specialty commodity chemicals or as fuels after minimal processing.


Assuntos
Cuphea/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Plantas/química , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Cuphea/genética , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Tioléster Hidrolases/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(13): 4838-43, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639514

RESUMO

The mammalian gut is a dynamic community of symbiotic microbes that interact with the host to impact health, disease, and metabolism. We constructed engineered bacteria that survive in the mammalian gut and sense, remember, and report on their experiences. Based on previous genetic memory systems, we constructed a two-part system with a "trigger element" in which the lambda Cro gene is transcribed from a tetracycline-inducible promoter, and a "memory element" derived from the cI/Cro region of phage lambda. The memory element has an extremely stable cI state and a Cro state that is stable for many cell divisions. When Escherichia coli bearing the memory system are administered to mice treated with anhydrotetracycline, the recovered bacteria all have switched to the Cro state, whereas those administered to untreated mice remain in the cI state. The trigger and memory elements were transferred from E. coli K12 to a newly isolated murine E. coli strain; the stability and switching properties of the memory element were essentially identical in vitro and during passage through mice, but the engineered murine E. coli was more stably established in the mouse gut. This work lays a foundation for the use of synthetic genetic circuits as monitoring systems in complex, ill-defined environments, and may lead to the development of living diagnostics and therapeutics.


Assuntos
Escherichia coli/genética , Trato Gastrointestinal/microbiologia , Engenharia Genética , Mamíferos/microbiologia , Microbiota , Animais , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos , Microbiota/efeitos dos fármacos , Tetraciclinas/farmacologia
11.
Nucleic Acids Res ; 42(14): 9493-503, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25034694

RESUMO

Co-localization of biochemical processes plays a key role in the directional control of metabolic fluxes toward specific products in cells. Here, we employ in vivo scaffolds made of RNA that can bind engineered proteins fused to specific RNA binding domains. This allows proteins to be co-localized on RNA scaffolds inside living Escherichia coli. We assembled a library of eight aptamers and corresponding RNA binding domains fused to partial fragments of fluorescent proteins. New scaffold designs could co-localize split green fluorescent protein fragments to produce activity as measured by cell-based fluorescence. The scaffolds consisted of either single bivalent RNAs or RNAs designed to polymerize in one or two dimensions. The new scaffolds were used to increase metabolic output from a two-enzyme pentadecane production pathway that contains a fatty aldehyde intermediate, as well as three and four enzymes in the succinate production pathway. Pentadecane synthesis depended on the geometry of enzymes on the scaffold, as determined through systematic reorientation of the acyl-ACP reductase fusion by rotation via addition of base pairs to its cognate RNA aptamer. Together, these data suggest that intra-cellular scaffolding of enzymatic reactions may enhance the direct channeling of a variety of substrates.


Assuntos
Enzimas/genética , Enzimas/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , RNA/metabolismo , Alcanos/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Redes e Vias Metabólicas/genética , Estrutura Terciária de Proteína , RNA/química , Proteínas de Ligação a RNA/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ácido Succínico/metabolismo
12.
Nucleic Acids Res ; 42(1): 681-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078086

RESUMO

In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.


Assuntos
Vias Biossintéticas/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Engenharia Genética/métodos , Sequência de Bases , Células-Tronco Embrionárias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Elementos Isolantes , Nucleotídeos/química , Biologia Sintética/métodos , Regiões Terminadoras Genéticas
13.
Proc Natl Acad Sci U S A ; 110(28): 11290-5, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798438

RESUMO

Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even- and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.


Assuntos
Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise
15.
Commun Biol ; 7(1): 633, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796644

RESUMO

Tardigrades, microscopic animals that survive a broad range of environmental stresses, express a unique set of proteins termed tardigrade-specific intrinsically disordered proteins (TDPs). TDPs are often expressed at high levels in tardigrades upon desiccation, and appear to mediate stress adaptation. Here, we focus on the proteins belonging to the secreted family of tardigrade proteins termed secretory-abundant heat soluble ("SAHS") proteins, and investigate their ability to protect diverse biological structures. Recombinantly expressed SAHS proteins prevent desiccated liposomes from fusion, and enhance desiccation tolerance of E. coli and Rhizobium tropici upon extracellular application. Molecular dynamics simulation and comparative structural analysis suggest a model by which SAHS proteins may undergo a structural transition upon desiccation, in which removal of water and solutes from a large internal cavity in SAHS proteins destabilizes the beta-sheet structure. These results highlight the potential application of SAHS proteins as stabilizing molecules for preservation of cells.


Assuntos
Dessecação , Proteínas Intrinsicamente Desordenadas , Tardígrados , Tardígrados/metabolismo , Animais , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Simulação de Dinâmica Molecular , Escherichia coli/metabolismo , Escherichia coli/genética
16.
Metab Eng ; 16: 130-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23376595

RESUMO

The 3-hydroxypropionate (3-HPA) bicycle is unique among CO2-fixing systems in that none of its enzymes appear to be affected by oxygen. Moreover, the bicycle includes a number of enzymes that produce novel intermediates of biotechnological interest, and the CO2-fixing steps in this pathway are relatively rapid. We expressed portions of the 3-HPA bicycle in a heterologous organism, E. coli K12. We subdivided the 3-HPA bicycle into four sub-pathways: (1) synthesis of propionyl-CoA from acetyl-CoA, (2) synthesis of succinate from propionyl-CoA, (3) glyoxylate production and regeneration of acetyl-CoA, and (4) assimilation of glyoxylate and propionyl-CoA to form pyruvate and regenerate acetyl-CoA. We expressed the novel enzymes of the 3-HPA bicycle in operon form and used phenotypic tests for activity. Sub-pathway 1 activated a propionate-specific biosensor. Sub-pathway 2, found in non-CO2-fixing bacteria, was reassembled in E. coli using genes from diverse sources. Sub-pathway 3, operating in reverse, generated succinyl-CoA sufficient to rescue a sucAD(-) double mutant of its diaminopimelic acid (DAP) auxotrophy. Sub-pathway 4 was able to reduce the toxicity of propionate and allow propionate to contribute to cell biomass in a prpC(-)(2 methylcitrate synthase) mutant strain. These results indicate that all of the sub-pathways of the 3-HPA bicycle can function to some extent in vivo in a heterologous organism, as indicated by growth tests. Overexpression of certain enzymes was deleterious to cell growth, and, in particular, expression of MMC-CoA lyase caused a mucoid phenotype. These results have implications for metabolic engineering and for bacterial evolution through horizontal gene transfer.


Assuntos
Proteínas de Bactérias/biossíntese , Chloroflexus/genética , Enzimas/biossíntese , Escherichia coli K12/metabolismo , Expressão Gênica , Ácido Láctico/análogos & derivados , Proteínas de Bactérias/genética , Chloroflexus/enzimologia , Enzimas/genética , Escherichia coli K12/genética , Ácido Láctico/biossíntese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
17.
Sci Rep ; 13(1): 6835, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100816

RESUMO

In gene therapy, potential integration of therapeutic transgene into host cell genomes is a serious risk that can lead to insertional mutagenesis and tumorigenesis. Viral vectors are often used as the gene delivery vehicle, but they are prone to undergoing integration events. More recently, non-viral delivery of linear DNAs having modified geometry such as closed-end linear duplex DNA (CELiD) have shown promise as an alternative, due to prolonged transgene expression and less cytotoxicity. However, whether modified-end linear DNAs can also provide a safe, non-integrating gene transfer remains unanswered. Herein, we compare the genomic integration frequency upon transfection of cells with expression vectors in the forms of circular plasmid, unmodified linear DNA, CELiDs with thioester loops, and Streptavidin-conjugated blocked-end linear DNA. All of the forms of linear DNA resulted in a high fraction of the cells being stably transfected-between 10 and 20% of the initially transfected cells. These results indicate that blocking the ends of linear DNA is insufficient to prevent integration.


Assuntos
DNA , Vetores Genéticos , Animais , Transfecção , DNA/genética , Vetores Genéticos/genética , Plasmídeos/genética , Transgenes , Mamíferos/genética
18.
Appl Environ Microbiol ; 78(8): 2660-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307292

RESUMO

The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose- or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to ∼80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.


Assuntos
Ciclo do Carbono , Processos Fototróficos , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Biomassa , Vias Biossintéticas/genética , Clorofila/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Sacarose/metabolismo
19.
ACS Synth Biol ; 11(3): 1292-1302, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35176859

RESUMO

Many organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically induced apoptosis. We show that several proteins from tardigrades, nematodes, and the Chinese giant salamander are apoptosis-protective. Notably, we identify a region of the human ApoE protein with similarity to extremotolerance-associated proteins that also protects against apoptosis. This region mirrors the phase separation behavior seen with such proteins, like the tardigrade protein CAHS2. Moreover, we identify a synthetic protein, DHR81, that shares this combination of elevated phase separation propensity and apoptosis protection. Finally, we demonstrate that driving protective proteins into the condensate state increases apoptosis protection, and highlights the ability of DHR81 condensates to sequester caspase-7. Taken together, this work draws a link between extremotolerance-associated proteins, condensate formation, and designing human cellular protection.


Assuntos
Proteínas Intrinsicamente Desordenadas , Tardígrados , Animais , Apoptose , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Tardígrados/metabolismo
20.
mSystems ; 7(2): e0146621, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35319251

RESUMO

Suppression of the host innate immune response is a critical aspect of viral replication. Upon infection, viruses may introduce one or more proteins that inhibit key immune pathways, such as the type I interferon pathway. However, the ability to predict and evaluate viral protein bioactivity on targeted pathways remains challenging and is typically done on a single-virus or -gene basis. Here, we present a medium-throughput high-content cell-based assay to reveal the immunosuppressive effects of viral proteins. To test the predictive power of our approach, we developed a library of 800 genes encoding known, predicted, and uncharacterized human virus genes. We found that previously known immune suppressors from numerous viral families such as Picornaviridae and Flaviviridae recorded positive responses. These include a number of viral proteases for which we further confirmed that innate immune suppression depends on protease activity. A class of predicted inhibitors encoded by Rhabdoviridae viruses was demonstrated to block nuclear transport, and several previously uncharacterized proteins from uncultivated viruses were shown to inhibit nuclear transport of the transcription factors NF-κB and interferon regulatory factor 3 (IRF3). We propose that this pathway-based assay, together with early sequencing, gene synthesis, and viral infection studies, could partly serve as the basis for rapid in vitro characterization of novel viral proteins. IMPORTANCE Infectious diseases caused by viral pathogens exacerbate health care and economic burdens. Numerous viral biomolecules suppress the human innate immune system, enabling viruses to evade an immune response from the host. Despite our current understanding of viral replications and immune evasion, new viral proteins, including those encoded by uncultivated viruses or emerging viruses, are being unearthed at a rapid pace from large-scale sequencing and surveillance projects. The use of medium- and high-throughput functional assays to characterize immunosuppressive functions of viral proteins can advance our understanding of viral replication and possibly treatment of infections. In this study, we assembled a large viral-gene library from diverse viral families and developed a high-content assay to test for inhibition of innate immunity pathways. Our work expands the tools that can rapidly link sequence and protein function, representing a practical step toward early-stage evaluation of emerging and understudied viruses.


Assuntos
Imunidade Inata , Vírus , Humanos , NF-kappa B , Evasão da Resposta Imune , Vírus/genética , Proteínas Virais/genética , Genes Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA