Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(22): 6286-6302, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694963

RESUMO

Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13-year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco ), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2 fluxes throughout the 13-year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP, Reco , and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.

2.
Glob Chang Biol ; 23(9): 3646-3666, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208232

RESUMO

Rapid Arctic warming is expected to increase global greenhouse gas concentrations as permafrost thaw exposes immense stores of frozen carbon (C) to microbial decomposition. Permafrost thaw also stimulates plant growth, which could offset C loss. Using data from 7 years of experimental Air and Soil warming in moist acidic tundra, we show that Soil warming had a much stronger effect on CO2 flux than Air warming. Soil warming caused rapid permafrost thaw and increased ecosystem respiration (Reco ), gross primary productivity (GPP), and net summer CO2 storage (NEE). Over 7 years Reco , GPP, and NEE also increased in Control (i.e., ambient plots), but this change could be explained by slow thaw in Control areas. In the initial stages of thaw, Reco , GPP, and NEE increased linearly with thaw across all treatments, despite different rates of thaw. As thaw in Soil warming continued to increase linearly, ground surface subsidence created saturated microsites and suppressed Reco , GPP, and NEE. However Reco and GPP remained high in areas with large Eriophorum vaginatum biomass. In general NEE increased with thaw, but was more strongly correlated with plant biomass than thaw, indicating that higher Reco in deeply thawed areas during summer months was balanced by GPP. Summer CO2 flux across treatments fit a single quadratic relationship that captured the functional response of CO2 flux to thaw, water table depth, and plant biomass. These results demonstrate the importance of indirect thaw effects on CO2 flux: plant growth and water table dynamics. Nonsummer Reco models estimated that the area was an annual CO2 source during all years of observation. Nonsummer CO2 loss in warmer, more deeply thawed soils exceeded the increases in summer GPP, and thawed tundra was a net annual CO2 source.


Assuntos
Ciclo do Carbono , Pergelissolo , Regiões Árticas , Dióxido de Carbono , Solo , Tundra
3.
Ecology ; 95(3): 602-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24804439

RESUMO

A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years because cold and waterlogged conditions have protected soil organic material from microbial decomposition. As the climate warms this vast and frozen C pool is at risk of being thawed, decomposed, and released to the atmosphere as greenhouse gasses. At the same time, some C losses may be offset by warming-mediated increases in plant productivity. Plant and microbial responses to warming ultimately determine net C exchange from ecosystems, but the timing and magnitude of these responses remain uncertain. Here we show that experimental warming and permafrost (ground that remains below 0 degrees C for two or more consecutive years) degradation led to a two-fold increase in net ecosystem C uptake during the growing season. However, warming also enhanced winter respiration, which entirely offset growing-season C gains. Winter C losses may be even higher in response to actual climate warming than to our experimental manipulations, and, in that scenario, could be expected to more than double overall net C losses from tundra to the atmosphere. Our results highlight the importance of winter processes in determining whether tundra acts as a C source or sink, and demonstrate the potential magnitude of C release from the permafrost zone that might be expected in a warmer climate.


Assuntos
Carbono/química , Mudança Climática , Temperatura Alta , Solo/química , Regiões Árticas , Ecossistema , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA