Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Angew Chem Int Ed Engl ; 63(8): e202310862, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38072831

RESUMO

Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling.


Assuntos
Aminoaciltransferases , Peptidil Transferases , Aminopeptidases , Proteínas de Bactérias/metabolismo , Aminoaciltransferases/metabolismo , Peptídeos/metabolismo
2.
Chem Soc Rev ; 51(10): 4121-4145, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35510539

RESUMO

Site-specific protein modification is a widely-used biochemical tool. However, there are many challenges associated with the development of protein modification techniques, in particular, achieving site-specificity, reaction efficiency and versatility. The engineering of peptide ligases and their substrates has been used to address these challenges. This review will focus on sortase, peptidyl asparaginyl ligases (PALs) and variants of subtilisin; detailing how their inherent specificity has been utilised for site-specific protein modification. The review will explore how the engineering of these enzymes and substrates has led to increased reaction efficiency mainly due to enhanced catalytic activity and reduction of reversibility. It will also describe how engineering peptide ligases to broaden their substrate scope is opening up new opportunities to expand the biochemical toolkit, particularly through the development of techniques to conjugate multiple substrates site-specifically onto a protein using orthogonal peptide ligases.


Assuntos
Cisteína Endopeptidases , Ligases , Proteínas de Bactérias/metabolismo , Catálise , Cisteína Endopeptidases/metabolismo , Ligases/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
3.
Bioconjug Chem ; 33(12): 2341-2347, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36356167

RESUMO

Staphylococcus aureus sortase A is a transpeptidase that has been extensively exploited for site-specific modification of proteins and was originally used to attach a labeling reagent containing an LPXTG recognition sequence to a protein or peptide with an N-terminal glycine. Sortase mutants with other recognition sequences have also been reported, but in all cases, the reversibility of the transpeptidation reaction limits the efficiency of sortase-mediated labeling reactions. For the wildtype sortase, depsipeptide substrates, in which the scissile peptide bond is replaced with an ester, allow effectively irreversible sortase-mediated labeling as the alcohol byproduct is a poor competing nucleophile. In this paper, the use of depsipeptide substrates for evolved sortase variants is reported. Substrate specificities of three sortases have been investigated allowing identification of an orthogonal pair of enzymes accepting LPEToG and LPESoG depsipeptides, which have been applied to dual N-terminal labeling of a model protein mutant containing a second, latent N-terminal glycine residue. The method provides an efficient orthogonal site-specific labeling technique that further expands the biochemical protein labeling toolkit.


Assuntos
Aminoaciltransferases , Depsipeptídeos , Staphylococcus aureus , Aminoaciltransferases/química , Proteínas de Bactérias/química , Glicina , Indicadores e Reagentes
4.
Org Biomol Chem ; 20(36): 7232-7235, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36062889

RESUMO

SurE is a standalone peptide cyclase essential for the production of surugamide antibiotics. Although SurE catalyses the cyclisation of varied nonribosomal peptides in vivo, its substrate specificity is poorly understood. To address this issue, an on-resin SurE cyclisation assay was developed and in combination with SNAC thioesters and kinetic measurements was used to define the chemical space of the N-terminal substrate residue.


Assuntos
Antibacterianos , Peptídeos , Ciclização , Cinética , Peptídeo Sintases/metabolismo , Peptídeos/química , Especificidade por Substrato
5.
Bioconjug Chem ; 32(10): 2205-2212, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34565149

RESUMO

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.


Assuntos
Toxina da Cólera , Toxinas Bacterianas , Imunoglobulinas , Neurônios Motores , Peptídeos
6.
J Am Chem Soc ; 141(13): 5211-5219, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856321

RESUMO

The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein-protein interaction surfaces makes it challenging to mimic natural assembly processes in artificial systems. Indeed, many successful computationally designed protein assemblies are prescreened for "designability", limiting the choice of components. Here, we report a simple and pragmatic strategy to assemble chosen multisubunit proteins into more complex structures. A coiled-coil domain appended to one face of the pentameric cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular supra-molecular complexes. Analysis of a tubular structure determined by X-ray crystallography has revealed a hierarchical assembly process that displays features reminiscent of the polymorphic assembly of polyomavirus proteins. The approach provides a simple and straightforward method to direct the assembly of protein building blocks which present either termini on a single face of an oligomer. This scaffolding approach can be used to generate bespoke supramolecular assemblies of functional proteins. Additionally, structural resolution of the scaffolded assemblies highlight "native-state" forced protein-protein interfaces, which may prove useful as starting conformations for future computational design.


Assuntos
Toxina da Cólera/química , Proteínas/química , Algoritmos , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
7.
Biochem Biophys Res Commun ; 510(1): 27-34, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30660368

RESUMO

Retinoic acid signalling is generally considered to be of animal origin. Recently, retinoic acid has been identified in cyanobacteria, yet no mechanism for its production has been identified. Here, we characterise for the first time a cyanobacterial aldehyde dehydrogenase that produces retinoic acid in vitro. Our computational studies suggest that the cyanobacterial aldehyde dehydrogenase resembles an ancestor of both eukaryotic aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2. The Chlorogloeopsis fritschii aldehyde dehydrogenase described here may find applications in synthetic production of retinoic acid as well as contributing to our understanding of retinoid synthesis in cyanobacteria.


Assuntos
Aldeído Desidrogenase/metabolismo , Cianobactérias/enzimologia , Tretinoína/metabolismo , Cianobactérias/metabolismo , Evolução Molecular , Filogenia
8.
Faraday Discuss ; 219(0): 112-127, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31313796

RESUMO

Stimuli-responsive receptors for the recognition unit of the cholera toxin (CTB) have been prepared by attaching multiple copies of its natural carbohydrate ligand, the GM1 oligosaccharide, to a thermoresponsive polymer scaffold. Below their lower critical solution temperature (LCST), polymers complex CTB with nanomolar affinity. When heated above their LCST, polymers undergo a reversible coil to globule transition which renders a proportion of the carbohydrate recognition motifs inaccessible to CTB. This thermally-modulated decrease in the avidity of the material for the protein has been used to reversibly capture CTB from solution, enabling its convenient isolation from a complex mixture.


Assuntos
Toxina da Cólera/metabolismo , Gangliosídeo G(M1)/metabolismo , Polímeros/metabolismo , Vibrio cholerae/enzimologia , Cólera/microbiologia , Gangliosídeo G(M1)/química , Humanos , Organoides , Transição de Fase , Polímeros/química , Ligação Proteica , Temperatura
9.
Org Biomol Chem ; 17(15): 3861-3867, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30938392

RESUMO

The design, synthesis and structural characterization of non-natural oligomers that adopt well-defined conformations, so called foldamers, is a key objective in developing biomimetic 3D functional architectures. For the aromatic oligoamide foldamer family, use of interactions between side-chains to control conformation is underexplored. The current manuscript addresses this objective through the design, synthesis and conformational analyses of model dimers derived from 3-O-alkylated para-aminobenzoic acid monomers. The O-alkyl groups on these foldamers are capable of adopting syn- or anti-conformers through rotation around the Ar-CO/NH axes. In the syn-conformation this allows the foldamer to act as a topographical mimic of the α-helix whereby the O-alkyl groups mimic the spatial orientation of the i and i + 4 side-chains from the α-helix. Using molecular modelling and 2D NMR analyses, this work illustrates that covalent links and hydrogen-bonding interactions between side-chains can bias the conformation in favour of the α-helix mimicking syn-conformer, offering insight that may be more widely applied to control secondary structure in foldamers.


Assuntos
Amidas/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular
10.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 254-263, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29042184

RESUMO

Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to block the IMPCH active site allowing investigation of the effects of mutation on ligand binding in the AICARFT active site. The majority of nucleotide ligands bind selectively at one of the two active sites with the exception of xanthosine monophosphate, XMP, which, in addition to binding in both AICARFT and IMPCH active sites, shows evidence for cooperative binding with communication between symmetrically-related active sites in the two IMPCH domains. The AICARFT site is capable of independently binding both nucleotide and folate substrates with high affinity however no evidence for positive cooperativity in binding could be detected using the model ligands employed in this study.


Assuntos
Hidroximetil e Formil Transferases/química , Modelos Moleculares , Complexos Multienzimáticos/química , Nucleotídeo Desaminases/química , Nucleotídeos/química , Domínio Catalítico , Humanos , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleotídeo Desaminases/genética , Nucleotídeo Desaminases/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Ligação Proteica , Especificidade por Substrato/fisiologia
11.
Biochemistry ; 56(37): 4931-4939, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28832133

RESUMO

The antimetabolite pentyl pantothenamide has broad spectrum antibiotic activity but exhibits enhanced activity against Escherichia coli. The PanDZ complex has been proposed to regulate the pantothenate biosynthetic pathway in E. coli by limiting the supply of ß-alanine in response to coenzyme A concentration. We show that formation of such a complex between activated aspartate decarboxylase (PanD) and PanZ leads to sequestration of the pyruvoyl cofactor as a ketone hydrate and demonstrate that both PanZ overexpression-linked ß-alanine auxotrophy and pentyl pantothenamide toxicity are due to formation of this complex. This both demonstrates that the PanDZ complex regulates pantothenate biosynthesis in a cellular context and validates the complex as a target for antibiotic development.


Assuntos
Acetilcoenzima A/metabolismo , Carboxiliases/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutamato Descarboxilase/metabolismo , Modelos Moleculares , Acetilcoenzima A/análogos & derivados , Acetilcoenzima A/química , Substituição de Aminoácidos , Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Sítios de Ligação , Calorimetria , Carboxiliases/química , Carboxiliases/genética , Coenzima A/síntese química , Coenzima A/química , Coenzima A/metabolismo , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Glutamato Descarboxilase/antagonistas & inibidores , Glutamato Descarboxilase/química , Glutamato Descarboxilase/genética , Cinética , Mutação , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/farmacologia , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Titulometria
12.
Chembiochem ; 18(2): 223-231, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27860106

RESUMO

Protein surface mimetics achieve high-affinity binding by exploiting a scaffold to project binding groups over a large area of solvent-exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein-protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of noncovalent interactions than CCP with surface-exposed basic residues on cyt c. High-field natural abundance 1 H,15 N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired.


Assuntos
Complexos de Coordenação/metabolismo , Citocromo-c Peroxidase/metabolismo , Citocromos c/metabolismo , Rutênio/química , 2,2'-Dipiridil/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Citocromo-c Peroxidase/antagonistas & inibidores , Citocromo-c Peroxidase/genética , Citocromos c/antagonistas & inibidores , Citocromos c/genética , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Concentração Osmolar , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
13.
Chembiochem ; 17(8): 753-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26818742

RESUMO

High-throughput studies have been widely used to identify protein-protein interactions; however, few of these candidate interactions have been confirmed in vitro. We have used a combination of isothermal titration calorimetry and fluorescence anisotropy to screen candidate interactions within the pantothenate biosynthetic pathway. In particular, we observed no interaction between the next enzyme in the pathway, pantothenate synthetase (PS), and aspartate decarboxylase, but did observe an interaction between PS and the putative Nudix hydrolase, YfcD. Confirmation of the interaction by fluorescence anisotropy was dependent upon labelling an adventitiously formed glycine on the protein N-terminal affinity purification tag by using Sortase. Subsequent formation of the protein-protein complex led to apparent restriction of the dynamics of this tag, thus suggesting that this approach could be generally applied to a subset of other protein-protein interaction complexes.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Ácido Pantotênico/biossíntese , Aminoaciltransferases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Vias Biossintéticas , Cisteína Endopeptidases/isolamento & purificação , Polarização de Fluorescência , Estrutura Molecular , Ácido Pantotênico/química , Peptídeo Sintases/metabolismo , Ligação Proteica , Conformação Proteica
14.
Chemistry ; 21(41): 14376-81, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26275391

RESUMO

Strain-promoted inverse electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions between 1,2,4,5-tetrazines and strained dienophiles, such as bicyclononynes, are among the fastest bioorthogonal reactions. However, the synthesis of 1,2,4,5-tetrazines is complex and can involve volatile reagents. 1,2,4-Triazines also undergo cycloaddition reactions with acyclic and unstrained dienophiles at elevated temperatures, but their reaction with strained alkynes has not been described. We postulated that 1,2,4-triazines would react with strained alkynes at low temperatures and therefore provide an alternative to the tetrazine cycloaddition reaction for use in in vitro or in vivo labelling experiments. We describe the synthesis of a 1,2,4-triazin-3-ylalanine derivative fully compatible with the fluorenylmethyloxycarbonyl (Fmoc) strategy for peptide synthesis and demonstrate its reaction with strained bicyclononynes at 37 °C with rates comparable to the reaction of azides with the same substrates. The synthetic route to triazinylalanine is readily adaptable to late-stage functionalization of other probe molecules, and the 1,2,4-triazine-SPIEDAC therefore has potential as an alternative to tetrazine cycloaddition for applications in cellular and biochemical studies.

15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1166-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699660

RESUMO

Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of ß-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.


Assuntos
Escherichia coli/enzimologia , Glutamato Descarboxilase/química , Ativação Enzimática , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Treonina/genética , Treonina/metabolismo
16.
Chembiochem ; 15(8): 1088-91, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24771713

RESUMO

We have investigated the interaction of peptides containing phosphohistidine analogues and their homologues with the prototypical phosphotyrosine binding SH2 domain from the eukaryotic cell signalling protein Grb2 by using a combination of isothermal titration calorimetry and a fluorescence anisotropy competition assay. These investigations demonstrated that the triazole class of phosphohistidine analogues are capable of binding too, suggesting that phosphohistidine could potentially be detected by this class of proteins in vivo.


Assuntos
Proteína Adaptadora GRB2/química , Histidina/análogos & derivados , Peptídeos/química , Peptídeos/metabolismo , Fosfotirosina/química , Triazóis/química , Sítios de Ligação , Calorimetria , Células Eucarióticas/química , Polarização de Fluorescência , Histidina/química , Humanos , Conformação Molecular , Domínios de Homologia de src
17.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535799

RESUMO

Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.


Assuntos
Toxina da Cólera , Mutagênicos , Humanos , Gangliosídeo G(M1) , Ligantes , Mutagênese
18.
Toxins (Basel) ; 16(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668619

RESUMO

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Assuntos
Toxina da Cólera , Cisteína Endopeptidases , Complexo de Golgi , Humanos , Toxina da Cólera/metabolismo , Cisteína Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Endocitose
19.
Biochem Soc Trans ; 41(4): 1072-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863181

RESUMO

Phosphorylation is a ubiquitous protein post-translational modification, and the importance of phosphorylation of serine, threonine and tyrosine is well established. What is lesser known is that almost all heteroatom-containing amino acids can be phosphorylated and, among these, histidine, aspartate and cysteine have well established roles in bacterial signalling pathways. The first of these, phosphohistidine, is the most unusual in that it is labile under many conditions used to study proteins in vitro and can exist as two different isomers. In the present short review, we highlight the chemical challenges that this modification presents and the manner in which chemical synthesis has been used to identify and mimic the modification in proteins.


Assuntos
Histidina/análogos & derivados , Histidina/química , Histidina/metabolismo , Isomerismo , Fosforilação , Transdução de Sinais
20.
Biochem J ; 444(2): 227-37, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22414210

RESUMO

Sirohaem is a cofactor of nitrite and sulfite reductases, essential for assimilation of nitrogen and sulfur. Sirohaem is synthesized from the central tetrapyrrole intermediate uroporphyrinogen III by methylation, oxidation and ferrochelation reactions. In Arabidopsis thaliana, the ferrochelation step is catalysed by sirohydrochlorin ferrochelatase (SirB), which, unlike its counterparts in bacteria, contains an [Fe-S] cluster. We determined the cluster to be a [4Fe-4S] type, which quickly oxidizes to a [2Fe-2S] form in the presence of oxygen. We also identified the cluster ligands as four conserved cysteine residues located at the C-terminus. A fifth conserved cysteine residue, Cys(135), is not involved in ligating the cluster directly, but influences the oxygen-sensitivity of the [4Fe-4S] form, and possibly the affinity for the substrate metal. Substitution mutants of the enzyme lacking the Fe-S cluster or Cys(135) retain the same specific activity in vitro and dimeric quaternary structure as the wild-type enzyme. The mutant variants also rescue a defined Escherichia coli sirohaem-deficient mutant. However, the mutant enzymes cannot complement Arabidopsis plants with a null AtSirB mutation, which exhibits post-germination arrest. These observations suggest an important physiological role for the Fe-S cluster in Planta, highlighting the close association of iron, sulfur and tetrapyrrole metabolism.


Assuntos
Arabidopsis/enzimologia , Evolução Molecular , Ferroquelatase/química , Proteínas Ferro-Enxofre/química , Uroporfirinas/química , Sequência de Aminoácidos , Arabidopsis/genética , Catálise , Sequência Conservada , Proteínas Ferro-Enxofre/genética , Dados de Sequência Molecular , Mutação , Extratos Vegetais/química , Extratos Vegetais/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Uroporfirinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA