Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 182(4): 843-854.e12, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32673567

RESUMO

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , COVID-19 , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica , Estudos Longitudinais , Pandemias , SARS-CoV-2 , Hipermutação Somática de Imunoglobulina
2.
Immunity ; 56(12): 2803-2815.e6, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38035879

RESUMO

Somatic hypermutation (SHM) drives affinity maturation and continues over months in SARS-CoV-2-neutralizing antibodies (nAbs). However, several potent SARS-CoV-2 antibodies carry no or only a few mutations, leaving the question of how ongoing SHM affects neutralization unclear. Here, we reverted variable region mutations of 92 antibodies and tested their impact on SARS-CoV-2 binding and neutralization. Reverting higher numbers of mutations correlated with decreasing antibody functionality. However, for some antibodies, including antibodies of the public clonotype VH1-58, neutralization of Wu01 remained unaffected. Although mutations were dispensable for Wu01-induced VH1-58 antibodies to neutralize Alpha, Beta, and Delta variants, they were critical for Omicron BA.1/BA.2 neutralization. We exploited this knowledge to convert the clinical antibody tixagevimab into a BA.1/BA.2 neutralizer. These findings broaden our understanding of SHM as a mechanism that not only improves antibody responses during affinity maturation but also contributes to antibody diversification, thus increasing the chances of neutralizing viral escape variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , Anticorpos Antivirais , Mutação/genética , Anticorpos Neutralizantes
3.
Immunity ; 55(6): 925-944, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35623355

RESUMO

Neutralizing antibodies can block infection, clear pathogens, and are essential to provide long-term immunity. Since the onset of the pandemic, SARS-CoV-2 neutralizing antibodies have been comprehensively investigated and critical information on their development, function, and potential use to prevent and treat COVID-19 have been revealed. With the emergence of SARS-CoV-2 immune escape variants, humoral immunity is being challenged, and a detailed understanding of neutralizing antibodies is essential to guide vaccine design strategies as well as antibody-mediated therapies. In this review, we summarize some of the key findings on SARS-CoV-2 neutralizing antibodies, with a focus on their clinical application.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização , Vacinação
4.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990590

RESUMO

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Epitopos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
6.
Proc Natl Acad Sci U S A ; 117(25): 14421-14432, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522871

RESUMO

Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.


Assuntos
Transformação Celular Viral , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/patogenicidade , Linfoma de Células B/patologia , Plasmócitos/patologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Fibroblastos , Herpesvirus Humano 4/metabolismo , Humanos , Linfoma de Células B/virologia , Camundongos , Camundongos Knockout , Plasmócitos/virologia , Cultura Primária de Células , Transativadores/genética , Transativadores/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo
7.
Eur J Immunol ; 49(1): 192-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359469

RESUMO

The germinal center reaction is essential for efficient humoral immunity, but it can also give rise to B cell lymphomas. Cre/loxP-mediated conditional gene knock-out or knock-in can be used for the genetic manipulation of germinal center B cells in vivo. Here we present a novel allele, Cγ1-CreERT2, that allows for timed activation of Cre recombinase in a small fraction of germinal center B cells. This allele will be useful to study normal and malignant germinal center B cell development in vivo.


Assuntos
Linfócitos B/fisiologia , Técnicas de Introdução de Genes/métodos , Técnicas de Inativação de Genes/métodos , Centro Germinativo/imunologia , Integrases/genética , Alelos , Animais , Diferenciação Celular , Humanos , Camundongos
8.
Proc Natl Acad Sci U S A ; 113(48): 13821-13826, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856754

RESUMO

Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Proteínas da Matriz Viral/genética , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Antígenos CD40/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Herpesvirus Humano 4/patogenicidade , Humanos , Camundongos , Perforina/deficiência , Perforina/genética , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Proteínas da Matriz Viral/biossíntese
9.
Proc Natl Acad Sci U S A ; 113(44): 12514-12519, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729526

RESUMO

Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells.


Assuntos
Linfócitos B/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Macrófagos/metabolismo , Mutagênese , Linfócitos T/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Ativação Linfocitária/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmócitos/metabolismo , Reprodutibilidade dos Testes
10.
BMC Biotechnol ; 16: 4, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26772810

RESUMO

BACKGROUND: The CRISPR/Cas9 system is increasingly used for gene inactivation in mouse zygotes, but homology-directed mutagenesis and use of inbred embryos are less established. In particular, Rosa26 knock-in alleles for the insertion of transgenes in a genomic 'safe harbor' site, have not been produced. Here we applied CRISPR/Cas9 for the knock-in of 8-11 kb inserts into Rosa26 of C57BL/6 zygotes. RESULTS: We found that 10-20 % of live pups derived from microinjected zygotes were founder mutants, without apparent off-target effects, and up to 50 % knock-in embryos were recovered upon coinjection of Cas9 mRNA and protein. Using this approach, we established a new mouse line for the Cre/loxP-dependent expression of Cas9. CONCLUSIONS: Altogether, our protocols and resources support the fast and direct generation of new Rosa26 knock-in alleles and of Cas9-mediated in vivo gene editing in the widely used C57BL/6 inbred strain.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Introdução de Genes/métodos , RNA não Traduzido/genética , Animais , Clonagem Molecular , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções
11.
Int J Med Inform ; 189: 105524, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889535

RESUMO

BACKGROUND: The Communication and Tracing App HIV (COMTRAC-HIV) project is developing a mobile health (mHealth) app for integrated care of HIV patients in Germany. The complexity of HIV treatment and continuous care necessitates the need for tailored mHealth solutions. This qualitative study explores design solutions and a prototype to enhance the app's functionality and effectiveness. METHODS: A total of eight HIV patients and pre-exposure prophylaxis (PrEP) users, recruited at the HIV Center Frankfurt, participated in focus groups and thinking-aloud tests (TA test). In the focus groups, design solutions were discussed for user-interface clarity, leading to the development of an interactive prototype, the usability of which was evaluated with a TA test. Data collection involved video/audio recordings. Qualitative analysis was conducted using a deductive category system, and focused on app design and usage in focus groups, and layout, navigation, interaction, terminology, comprehension, feedback, and level of satisfaction in TA tests. RESULTS: The app was commended for its simple, clear design, especially its medication reminders and health tracking features. Opinions on the symptom diary varied however, respondents noting it more suitable for HIV users than PrEP users. Privacy concerns suggest avoiding display of HIV-specific information. Suggested improvements include e.g. image uploads, drug interaction checks and prescription tracking. A total of 25 usability issues were identified in the TA test, with most found in the layout (n = 6), navigation (n = 5), interaction (n = 5), and terminology (n = 5) categories. Two examples are non-intuitive controls and illogical button placement. Despite these disadvantages, participants noted positive impressions (n = 5) in the satisfaction category. CONCLUSION: The study emphasizes the need for patient-centered design in mobile HIV care solutions, highlighting to the app's user-friendliness and potential to enhance care. Further research is necessary to refine the app's functionality and to align it with clinical and patients' privacy needs.

12.
Sci Immunol ; 9(92): eadi0042, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306418

RESUMO

Familial hemophagocytic lymphohistiocytosis (FHL) is an inherited, often fatal immune deficiency characterized by severe systemic hyperinflammation. Although allogeneic bone marrow transplantation can be curative, more effective therapies are urgently needed. FHL is caused by inactivating mutations in proteins that regulate cellular immunity. Here, we used an adeno-associated virus-based CRISPR-Cas9 system with an inhibitor of nonhomologous end joining to repair such mutations in potentially long-lived T cells ex vivo. Repaired CD8 memory T cells efficiently cured lethal hyperinflammation in a mouse model of Epstein-Barr virus-triggered FHL2, a subtype caused by perforin-1 (Prf1) deficiency. Furthermore, repair of PRF1 and Munc13-4 (UNC13D)-whose deficiency causes the FHL subtype FHL3-in mutant memory T cells from two critically ill patients with FHL restored T cell cytotoxicity. These results provide a starting point for the treatment of genetic T cell immune dysregulation syndromes with repaired autologous T cells.


Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Animais , Camundongos , Humanos , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Sistemas CRISPR-Cas , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Células T de Memória , Herpesvirus Humano 4 , Proteínas de Membrana/genética
13.
Healthcare (Basel) ; 11(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570423

RESUMO

The Communication and Tracing App HIV (COMTRAC-HIV) project aims to develop a mobile health application for integrated care of HIV patients due to the low availability of those apps in Germany. This study addressed organizational conditions and necessary app functionalities, especially for the care of late diagnosed individuals (late presenters) and those using pre-exposure prophylaxis. We followed a human-centered design approach and interviewed HIV experts in Germany to describe the context of use of the app. The interviews were paraphrased and analyzed with a qualitative content analysis. To define the context of use, user group profiles were defined and tasks derived, which will represent the functionalities of the app. A total of eight experts were included in the study. The results show that the app should include a symptom diary for entering symptoms, side effects, and their intensity. It offers chat/video call functionality for communication with an HIV expert, appointment organization, and sharing findings. The app should also provide medication overview and reminders for medications and appointments. This qualitative study is a first step towards the development of an app for HIV individuals in Germany. Further research includes involving patients in the initial app design and test design usability.

14.
Sci Adv ; 9(13): eade1792, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989351

RESUMO

The blueprints of developing organs are preset at the early stages of embryogenesis. Transcriptional and epigenetic mechanisms are proposed to preset developmental trajectories. However, we reveal that the competence for the future cardiac fate of human embryonic stem cells (hESCs) is preset in pluripotency by a specialized mRNA translation circuit controlled by RBPMS. RBPMS is recruited to active ribosomes in hESCs to control the translation of essential factors needed for cardiac commitment program, including Wingless/Integrated (WNT) signaling. Consequently, RBPMS loss specifically and severely impedes cardiac mesoderm specification, leading to patterning and morphogenetic defects in human cardiac organoids. Mechanistically, RBPMS specializes mRNA translation, selectively via 3'UTR binding and globally by promoting translation initiation. Accordingly, RBPMS loss causes translation initiation defects highlighted by aberrant retention of the EIF3 complex and depletion of EIF5A from mRNAs, thereby abrogating ribosome recruitment. We demonstrate how future fate trajectories are programmed during embryogenesis by specialized mRNA translation.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Coração , Transdução de Sinais , Proteínas de Ligação a RNA/metabolismo
15.
Stud Health Technol Inform ; 309: 150-154, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37869829

RESUMO

In recent years, telemedicine has advanced significantly, offering new possibilities for improving healthcare and patient outcomes. This paper presents a telemedicine app for HIV patients, developed using a human-centered design approach. Designed to meet the diverse and specific needs of Pre-Exposure Prophylaxis (PrEP) users and Late Presenters (LP), the app is part of the COMTRAC-HIV Project at the University Hospital Frankfurt. Through interviews with HIV experts and healthcare professionals, initial design solutions were derived. The paper explores the app's design process, core functionalities, and future directions, aiming to provide comprehensive support for individuals living with HIV.


Assuntos
Infecções por HIV , Aplicativos Móveis , Profilaxia Pré-Exposição , Telemedicina , Humanos , Infecções por HIV/prevenção & controle , Infecções por HIV/tratamento farmacológico , Atenção à Saúde
16.
Sci Immunol ; 8(89): eadk5845, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976348

RESUMO

The human immune response must continuously adapt to newly emerging SARS-CoV-2 variants. To investigate how B cells respond to repeated SARS-CoV-2 antigen exposure by Wu01 booster vaccination and Omicron breakthrough infection, we performed a molecular longitudinal analysis of the memory B cell pool. We demonstrate that a subsequent breakthrough infection substantially increases the frequency of B cells encoding SARS-CoV-2-neutralizing antibodies. However, this is not primarily attributable to maturation, but to selection of preexisting B cell clones. Moreover, broadly reactive memory B cells arose early and even neutralized highly mutated variants like XBB.1.5 that the individuals had not encountered. Together, our data show that SARS-CoV-2 immunity is largely imprinted on Wu01 over the course of multiple antigen contacts but can respond to new variants through preexisting diversity.


Assuntos
COVID-19 , Células B de Memória , Humanos , Imunidade Humoral , Infecções Irruptivas , SARS-CoV-2 , Anticorpos Antivirais
17.
Cancers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077655

RESUMO

Most people infected by EBV acquire specific immunity, which then controls latent infection throughout their life. Immune surveillance of EBV-infected cells by cytotoxic CD4+ T cells has been recognized; however, the molecular mechanism of generating cytotoxic effector T cells of the CD4+ subset remains poorly understood. Here we compared phenotypic features and the transcriptome of EBV-specific effector-memory CD4+ T cells and CD8+ T cells in mice and found that both T cell types show cytotoxicity and, to our surprise, widely similar gene expression patterns relating to cytotoxicity. Similar to cytotoxic CD8+ T cells, EBV-specific cytotoxic CD4+ T cells from human peripheral blood expressed T-bet, Granzyme B, and Perforin and upregulated the degranulation marker, CD107a, immediately after restimulation. Furthermore, T-bet expression in cytotoxic CD4+ T cells was highly correlated with Granzyme B and Perforin expression at the protein level. Thus, differentiation of EBV-specific cytotoxic CD4+ T cells is possibly controlled by mechanisms shared by cytotoxic CD8+ T cells. T-bet-mediated transcriptional regulation may explain the similarity of cytotoxic effector differentiation between CD4+ T cells and CD8+ T cells, implicating that this differentiation pathway may be directed by environmental input rather than T cell subset.

18.
Nat Biotechnol ; 33(5): 543-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25803306

RESUMO

The insertion of precise genetic modifications by genome editing tools such as CRISPR-Cas9 is limited by the relatively low efficiency of homology-directed repair (HDR) compared with the higher efficiency of the nonhomologous end-joining (NHEJ) pathway. To enhance HDR, enabling the insertion of precise genetic modifications, we suppressed the NHEJ key molecules KU70, KU80 or DNA ligase IV by gene silencing, the ligase IV inhibitor SCR7 or the coexpression of adenovirus 4 E1B55K and E4orf6 proteins in a 'traffic light' and other reporter systems. Suppression of KU70 and DNA ligase IV promotes the efficiency of HDR 4-5-fold. When co-expressed with the Cas9 system, E1B55K and E4orf6 improved the efficiency of HDR up to eightfold and essentially abolished NHEJ activity in both human and mouse cell lines. Our findings provide useful tools to improve the frequency of precise gene modifications in mammalian cells.


Assuntos
Sistemas CRISPR-Cas/genética , Reparo do DNA por Junção de Extremidades/genética , Engenharia Genética/métodos , Adenoviridae/genética , Proteínas E4 de Adenovirus/biossíntese , Proteínas E4 de Adenovirus/genética , Animais , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/genética , Regulação da Expressão Gênica , Genoma Humano , Recombinação Homóloga/genética , Humanos , Camundongos , Proteínas Virais/biossíntese , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA