Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 63(13): 1621-1635, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607680

RESUMO

Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.


Assuntos
Aminoacil-tRNA Sintetases , Escherichia coli , Simulação de Dinâmica Molecular , Polietilenoglicóis , Conformação Proteica , Polietilenoglicóis/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica , Domínio Catalítico , Peso Molecular
2.
Front Microbiol ; 14: 1176606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187542

RESUMO

Hot spring outflow channels provide geochemical gradients that are reflected in microbial community compositions. In many hot spring outflows, there is a distinct visual demarcation as the community transitions from predominantly chemotrophs to having visible pigments from phototrophs. It has been hypothesized that this transition to phototrophy, known as the photosynthetic fringe, is a result of the pH, temperature, and/or sulfide concentration gradients in the hot spring outflows. Here, we explicitly evaluated the predictive capability of geochemistry in determining the location of the photosynthetic fringe in hot spring outflows. A total of 46 samples were taken from 12 hot spring outflows in Yellowstone National Park that spanned pH values from 1.9 to 9.0 and temperatures from 28.9 to 92.2°C. Sampling locations were selected to be equidistant in geochemical space above and below the photosynthetic fringe based on linear discriminant analysis. Although pH, temperature, and total sulfide concentrations have all previously been cited as determining factors for microbial community composition, total sulfide did not correlate with microbial community composition with statistical significance in non-metric multidimensional scaling. In contrast, pH, temperature, ammonia, dissolved organic carbon, dissolved inorganic carbon, and dissolved oxygen did correlate with the microbial community composition with statistical significance. Additionally, there was observed statistical significance between beta diversity and the relative position to the photosynthetic fringe with sites above the photosynthetic fringe being significantly different from those at or below the photosynthetic fringe according to canonical correspondence analysis. However, in combination, the geochemical parameters considered in this study only accounted for 35% of the variation in microbial community composition determined by redundancy analysis. In co-occurrence network analyses, each clique correlated with either pH and/or temperature, whereas sulfide concentrations only correlated with individual nodes. These results indicate that there is a complex interplay between geochemical variables and the position of the photosynthetic fringe that cannot be fully explained by statistical correlations with the individual geochemical variables included in this study.

3.
ACS Catal ; 10(17): 10229-10242, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34295570

RESUMO

Prolyl-tRNA synthetases (ProRSs) catalyze the covalent attachment of proline onto cognate tRNAs, an indispensable step for protein synthesis in all living organisms. ProRSs are modular enzymes and the "prokaryotic-like" ProRSs are distinguished from "eukaryotic-like" ProRSs by the presence of an editing domain (INS) inserted between motifs 2 and 3 of the main catalytic domain. Earlier studies suggested the presence of coupled-domain dynamics could contribute to catalysis; however, the role that the distal, highly mobile INS domain plays in catalysis at the synthetic active site is not completely understood. In the present study, a combination of theoretical and experimental approaches has been used to elucidate the precise role of INS domain dynamics. Quantum mechanical/molecular mechanical simulations were carried out to model catalytic Pro-AMP formation by Enterococcus faecalis ProRS. The energetics of the adenylate formation by the wild-type enzyme was computed and contrasted with variants containing active site mutations, as well as a deletion mutant lacking the INS domain. The combined results revealed that two distinct types of dynamics contribute to the enzyme's catalytic power. One set of motions is intrinsic to the INS domain and leads to conformational preorganization that is essential for catalysis. A second type of motion, stemming from the electrostatic reorganization of active site residues, impacts the height and width of the energy profile and has a critical role in fine tuning the substrate orientation to facilitate reactive collisions. Thus, motions in a distal domain can preorganize the active site of an enzyme to optimize catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA