Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 223, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750581

RESUMO

BACKGROUND: Batai virus (BATV) is a zoonotic arbovirus of veterinary importance. A high seroprevalence in cows, sheep and goats and infection in different mosquito species has been observed in Central Europe. Therefore, we studied indigenous as well as exotic species of the genera Culex and Aedes for BATV vector competence at different fluctuating temperature profiles. METHODS: Field caught Culex pipiens biotype pipiens, Culex torrentium, Aedes albopictus and Aedes japonicus japonicus from Germany and Aedes aegypti laboratory colony were infected with BATV strain 53.3 using artificial blood meals. Engorged mosquitoes were kept under four (Culex species) or three (Aedes species) fluctuating temperature profiles (18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C) at a humidity of 70% and a dark/light rhythm of 12:12 for 14 days. Transmission was measured by testing the saliva obtained by forced salivation assay for viable BATV particles. Infection rates were analysed by testing whole mosquitoes for BATV RNA by quantitative reverse transcription PCR. RESULTS: No transmission was detected for Ae. aegypti, Ae. albopictus or Ae. japonicus japonicus. Infection was observed for Cx. p. pipiens, but only in the three conditions with the highest temperatures (21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C). In Cx. torrentium infection was measured at all tested temperatures with higher infection rates compared with Cx. p. pipiens. Transmission was only detected for Cx. torrentium exclusively at the highest temperature of 27 ± 5 °C. CONCLUSIONS: Within the tested mosquito species, only Cx. torrentium seems to be able to transmit BATV if the climatic conditions are feasible.


Assuntos
Aedes , Vírus Bunyamwera , Culex , Mosquitos Vetores , Temperatura , Animais , Aedes/virologia , Aedes/fisiologia , Aedes/classificação , Culex/virologia , Culex/fisiologia , Culex/classificação , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia , Vírus Bunyamwera/genética , Vírus Bunyamwera/fisiologia , Vírus Bunyamwera/isolamento & purificação , Saliva/virologia , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Feminino , Europa (Continente) , Alemanha
2.
Sci Rep ; 13(1): 308, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609450

RESUMO

The increasing trend of mosquito-borne pathogens demands more accurate global estimations of infection and transmission risks between mosquitoes. Here, we systematically review field and laboratory studies to assess the natural field infection and experimental laboratory transmission risk in Culex mosquitoes. We studied four worldwide flaviviruses: West Nile, Usutu, Japanese encephalitis, and St. Louis encephalitis, belonging to the Japanese encephalitis Serocomplex (JES). The PRISMA statement was carried out for both approaches. The Transmission-Infection Risk of the diverse mosquito species for the different viruses was estimated through seven variables. We considered 130 and 95 articles for field and experimental approach, respectively. We identified 30 species naturally infected, and 23 species capable to transmit some of the four flaviviruses. For the JES, the highest Transmission-Infection Risk estimate was recorded in Culex quinquefasciatus (North America). The maximum Infection-Transmission Risk values for West Nile was Culex restuans, for Usutu it was Culex pipiens (Europe), for St. Louis encephalitis Culex quinquefasciatus (North America), and for Japanese encephalitis Culex gelidus (Oceania). We conclude that on a worldwide scale, a combination of field and experimental data offers a better way of understanding natural infection and transmission risks between mosquito populations.


Assuntos
Culex , Culicidae , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Encefalite de St. Louis , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Mosquitos Vetores , Encefalite de St. Louis/epidemiologia , Encefalite Japonesa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA