Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(9): e202302889, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37974486

RESUMO

Herein, we describe how computational mechanistic understanding has led directly to the discovery of new 2H-phosphindole for C-CAr bond activation and dearomatization reaction. We uncover an unexpected intramolecular C-H bond activation with a 2H-phosphindole derivative. This new intriguing experimental observation and further theoretical studies led to an extension of the reaction mechanism with 2H-phosphindole. Through DFT calculations, we confirm that within a five-membered ring, the polarizable PC3 unit orchestrates the formation of an electrophilic phosphorus atom (P+ ) and a nucleophilic carbon atom (C- ). This kinetically accessible ambiphilic phosphorus/carbon couple is spatially separated by geometric constraints, and their reactivity is modulated through structural resonance.

2.
J Org Chem ; 89(5): 3133-3142, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359780

RESUMO

Organocatalytic desymmetrization reaction is a powerful tool for constructing axial chirality, but the theoretical study on the origin of stereoselectivity still lags behind even now. In this work, the N-heterocyclic carbene (NHC)-catalyzed desymmetrization reaction of biaryl frameworks for the synthesis of axially chiral aldehydes has been selected and theoretically investigated by using density functional theory (DFT). The fundamental pathway involves several steps, i.e., desymmetrization, formation of Breslow oxidation, esterification, and NHC regeneration. The desymmetrization and formation of Breslow processes have been identified as stereoselectivity-determining and rate-determining steps. Further weak interaction analyses proved that the C-H···O hydrogen bond and C-H···π interactions are responsible for the stability of the key stereoselective desymmetrization transition states. This research contributes to understanding the nature of NHC-catalyzed desymmetrization reactions for the synthesis of axially chiral compounds.

3.
J Chem Inf Model ; 64(11): 4530-4541, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808649

RESUMO

By performing molecular dynamics (MD), quantum mechanical/molecular mechanical (QM/MM) calculations, and QM cluster calculations, the origin of chemoselectivity of halohydrin dehalogenase (HHDH)-catalyzed ring-opening reactions of epoxide with the nucleophilic reagent NO2- has been explored. Four possible chemoselective pathways were considered, and the computed results indicate that the pathway associated with the nucleophilic attack on the Cα position of epoxide by NO2- is most energetically favorable and has an energy barrier of 12.9 kcal/mol, which is close to 14.1 kcal/mol derived from experimental kinetic data. A hydrogen bonding network formed by residues Ser140, Tyr153, and Arg157 can strengthen the electrophilicity of the active site of the epoxide substrate to affect chemoselectivity. To predict the energy barrier trends of the chemoselective transition states, multiple analyses including distortion analysis and electrophilic Parr function (Pk+) analysis were carried out with or without an enzyme environment. The obtained insights should be valuable for the rational design of enzyme-catalyzed and biomimetic organocatalytic epoxide ring-opening reactions with special chemoselectivity.


Assuntos
Biocatálise , Compostos de Epóxi , Hidrolases , Hidrolases/metabolismo , Hidrolases/química , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Domínio Catalítico , Especificidade por Substrato
4.
New Phytol ; 239(6): 2212-2224, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431066

RESUMO

Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two-hybrid, protein biochemistry, genetics, and live-cell imaging to reveal the role of calcium-dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two-hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho-dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
5.
Org Biomol Chem ; 21(36): 7410-7418, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37661852

RESUMO

Due to the ubiquity of carbonyl compounds and the abundance of nickel on the earth, nickel-catalyzed decarbonylation has garnered increasing attention in recent years. This type of reaction has seen significant developments in various aspects; however, certain challenges concerning reactivity, selectivity, and transformation efficiency remain pressing and demand urgent resolution. In this study, we employed DFT calculations to investigate the mechanism of nickel-catalyzed decarbonylation reactions involving lactones, as well as the effects of phosphine ligands. Mechanically, Ni(0) first activates the C(acyl)-O bond of the lactone, followed by a decarbonylation step, and ultimately results in reductive elimination under carbonyl coordination to yield the product. Through a comprehensive examination of the electronic and steric effects of the phosphine ligands, we deduced that the electronic effect of the ligand plays a dominant role in the decarbonylation reaction. By enhancing the electron-withdrawing ability of the ligand, the energy barrier of the entire reaction can be significantly reduced. The obtained insights should be valuable for understanding the detailed mechanism and the role of phosphine ligands in nickel catalysis. Moreover, they offer crucial clues for the rational design of more efficient catalytic reactions.

6.
J Environ Manage ; 337: 117681, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931070

RESUMO

Maximizing the use of valuable components in coal gasification slag is of great significance for resource recovery and the environment due to the huge annual emission of coal gasification slag. This study successfully produced Si-Fe-Al-Ca alloy with a composition of 63.83 wt% Si, 19.73 wt% Fe, 7.09 wt% Al, 6.32 wt% Ca, 1.70 wt% Ti, 0.03 wt% P, 0.66 wt% Mn, 0.05 wt% Cr, 0.53 wt% C, and 0.06 wt% others through electric arc furnace smelting from mixed coal gasification fine slag. The alloy composition is close to the standard 65% ferrosilicon, which can be used in the deoxidation of the molten steel industry. Moreover, the alloy yield was increased from 20.53% to 67.78% by using the residual carbon of the coal gasification slag as the reductant directly instead of adding petroleum coke. The transformation of coal gasification fine slag during the smelting process and the formation mechanism of the alloy were studied and the carbothermal reduction mechanism of Al2O3 and CaO can be explained by the reduction and decomposition theory of carbides. The complex liquid phase of the reactant system and product system in the smelting process made the carbothermal reaction of Al2O3 and CaO easier to occur, but it also brought the problem that the reactions were not fully completed.


Assuntos
Carvão Mineral , Coque , Ligas , Carbono
7.
J Am Chem Soc ; 144(7): 3137-3145, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133141

RESUMO

Diradical generation followed by radical-radical cross-coupling is a powerful synthetic tool, but its detailed mechanism has yet to be established. Herein, we proposed and confirmed a new model named relayed proton-coupled electron transfer (relayed-PCET) for diradical generation, which could open a door for new radical-radical cross-coupling reactions. Quantum mechanics calculations were performed on a selected carbene-mediated diradical cross-coupling reaction model and a designed model, and the exact electronic structural changes during the radical processes have been observed for the first time.

8.
J Org Chem ; 87(17): 11478-11490, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35993493

RESUMO

Three series new NH2-benzophosphole oxides were synthesized from cycloaddition of o-aminophenyl phosphine oxide with alkynes. The relationship between the location of the amino group and the photophysical properties were studied by absorption and emission spectroscopies and theoretical calculation. 4-NH2-benzophosphole oxides show strong fluorescence emission and high fluorescence quantum efficiency. This "One stone three birds" process provides rapid access to multiple organophosphorus-based luminogens for the structure-property relationship study.


Assuntos
Alcinos , Óxidos , Animais , Aves , Fluorescência , Estrutura Molecular
9.
J Org Chem ; 87(12): 7989-7994, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35618673

RESUMO

It is generally accepted that N-heterocyclic carbene (NHC)-catalyzed imine transformations are initiated by a nucleophilic attack (NA) by NHC. However, due to significant nucleophilicity of the iminyl nitrogen atom in imines, the electrophilic attack (EA) by electrophiles onto imine would also be a possible mechanism of these kinds of reactions. Therefore, we use the quantum mechanical approach to disclose that both the NA and EA modes could be switchable for a wide range of NHC-catalyzed transformations of imines.

10.
Org Biomol Chem ; 20(28): 5525-5534, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786703

RESUMO

Uncovering the comprehensive catalytic mechanism for the activation of triplet O2 through metal-free and cofactor-free oxidases and oxygenases remains one of the most challenging problems in the area of enzymatic catalysis. Herein, we performed multiscale simulation with molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) techniques to reveal the detailed mechanism of ActVA-Orf6 monooxygenase catalyzed oxygenation of phenols to quinones from Streptomyces coelicolor, such as the oxidation of 6-deoxydihydrocarafungin (DDHK) to dihydrocarafungin (DHK). The entire catalytic mechanism consists of three steps: (1) proton-coupled electron transfer (PCET) from the substrate DDHK to triplet O2 with the aid of an explicit water molecule, (2) the formation of a C-O bond via an open-shell singlet diradical complexation pathway, and (3) dehydration via a six-membered ring mode assisted by one water molecule. The complete energetic profiles show that the rate-determining step is the dehydration with an energy barrier of 20.7 kcal mol-1, which is close to that of 19.7 kcal mol-1 derived from experimental kinetic data. Our mechanistic study not only helps to deeply understand the fundamental mechanism of metal-free and cofactor-free oxidase and oxygenase catalyzed different reactions, but also discloses a new route that proceeds through the processes of PCET and the open-shell singlet transition state.


Assuntos
Oxigenases de Função Mista , Prótons , Catálise , Desidratação , Elétrons , Oxigenases de Função Mista/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Streptomyces coelicolor , Água
11.
Org Biomol Chem ; 20(8): 1662-1670, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133369

RESUMO

By performing density functional theory (DFT) calculations, we investigated and identified the fundamental pathway for N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral benzothiophene-fused biaryls using enal and 2-benzyl-benzothiophene-3-carbaldehyde, which includes (1) nucleophilic attack on enal by the organocatalyst NHC, (2) [1,2]-proton transfer, (3) oxidation, (4) stereoselective formation of the C-C σ bond, (5) intramolecular [2 + 2] cycloaddition, (6) dissociation of NHC, (7) release of CO2, and (8) transformation to axial chirality. Moreover, the calculated results can reasonably explain the observed chemo- and stereoselectivities for the formation of both benzothiophene/benzofuran-fused biaryls in these kinds of reactions. Further non-covalent interaction (NCI) and atoms-in-molecules (AIM) analyses demonstrate that the hydrogen bond interactions are responsible for the stability of key stereoselective transition states. This work would be useful for understanding the origin of stereoselectivity of NHC-catalyzed intermolecular cyclization reactions for the synthesis of axially benzothiophene/benzofuran-fused biaryl compounds.

12.
BMC Pulm Med ; 22(1): 232, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710405

RESUMO

BACKGROUND: Numerous predictive formulas based on different ethnics have been developed to determine continuous positive airway pressure (CPAP) for patients with obstructive sleep apnea (OSA) without laboratory-based manual titrations. However, few studies have focused on patients with OSA in China. Therefore, this study aimed to develop a predictive equation for determining the optimal value of CPAP for patients with OSA in China. METHODS: 526 pure moderate to severe OSA patients with attended CPAP titrations during overnight polysomnogram were spited into either formula derivation (419 patients) or validation (107 patients) group according to the treatment time. Predictive model was created in the derivation group, and the accuracy of the model was tested in the validation group. RESULTS: Apnea hypopnea index (AHI), body mass index (BMI), longest apnea time (LAT), and minimum percutaneous oxygen saturation (minSpO2) were considered as independent predictors of optimal CPAP through correlation analysis and multiple stepwise regression analysis. The best equation to predict the optimal value of CPAP was: CPAPpred = 7.581 + 0.020*AHI + 0.101*BMI + 0.015*LAT-0.028*minSpO2 (R2 = 27.2%, p < 0.05).The correlation between predictive CPAP and laboratory-determined manual optimal CPAP was significant in the validation group (r = 0.706, p = 0.000). And the pressure determined by the predictive formula did not significantly differ from the manually titrated pressure in the validation cohort (10 ± 1 cmH2O vs. 11 ± 3 cmH2O, p = 0.766). CONCLUSIONS: The predictive formula based on AHI, BMI, LAT, and minSpO2 is useful in calculating the effective CPAP for patients with pure moderate to severe OSA in China to some extent.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Apneia Obstrutiva do Sono , Índice de Massa Corporal , China , Humanos , Polissonografia , Apneia Obstrutiva do Sono/terapia
13.
Angew Chem Int Ed Engl ; 61(52): e202212005, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36314469

RESUMO

Atropisomers bearing multiple stereogenic axes are of increasing importance to the field of material science, pharmaceuticals, and catalysis. However, the atroposelective construction of multi-axis atropisomers remains rare and challenging, due to the intrinsical difficulties in the stereo-control of the multiple stereogenic axes. Herein, we demonstrate a single-step construction of a new class of 1,2-diaxially chiral triaryl α-pyranones by an N-heterocyclic carbene organocatalytic asymmetric [3+3] annulation of well-designed alkynyl acylazolium precursors and enolizable sterically hindered 2-aryl ketones. The protocol features broad substrate scope (>50 examples), excellent stereo-control (most cases >20 : 1 dr, up to 99.5 : 0.5 er), and potentially useful synthetic applications. The success of this reaction relies on the rational design of structurally matched reaction partners and the careful selection of the asymmetric catalytic system. DFT calculations have also been performed to discover and rationalize the origin of the high stereoselectivity of this reaction.

14.
J Org Chem ; 86(3): 2339-2358, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33411529

RESUMO

The transition metal catalyzed amide bond forming reaction of esters with amines has been developed as an advanced approach for overcoming the shortcomings of traditional methods. The broad scope of substrates in transition metal catalyzed amidations remains a challenge. Here, a manganese(I)-catalyzed method for the direct synthesis of amides from a various number of esters and amines is reported with unprecedented substrate scope using a low catalyst loading. A wide range of aromatic, aliphatic, and heterocyclic esters, even in fatty acid esters, reacted with a diverse range of primary aryl amines, primary alkyl amines, and secondary alkyl amines to form amides. It is noteworthy that this approach provides the first example of the transition metal catalyzed amide bond forming reaction from fatty acid esters and amines. The acid-base mechanism for the manganese(I)-catalyzed direct amidation of esters with amines was elucidated by DFT calculations.


Assuntos
Aminas , Ésteres , Amidas , Catálise , Manganês
15.
J Org Chem ; 86(21): 15276-15283, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34605241

RESUMO

A computational study was performed to explore the possible mechanisms of ß-isocinchonine-catalyzed asymmetric C(sp2)-H allylation of trisubstituted allenoates using Morita-Baylis-Hillman (MBH) carbonates for synthesis of axially chiral tetrasubstituted allenoates. The calculated results indicate that the most energetically favorable pathway includes (1) nucleophilic attack on MBH carbonate by ß-isocinchonine, (2) BocO- dissociation, (3) stereoselective formation of the C-C bond, and (4) regeneration of the catalyst. By tracking the orbital overlap/interaction changes, the half shoulder-to-head orbital overlap mode can be smoothly switched to a head-to-head orbital overlap mode for the key C-C σ bond formation, which is also identified as the stereoselectivity-determining process. Further distortion/interaction, noncovalent interaction (NCI), and atom-in-molecule (AIM) analyses demonstrate that C-H···O and C-H···π interactions should be key for controlling the axial and central chirality. This work would be useful for rational design of organocatalytic allylic alkylation reactions for synthesis of axially chiral compounds in the future.


Assuntos
Compostos Alílicos , Carbonatos , Catálise , Estrutura Molecular , Estereoisomerismo
16.
J Org Chem ; 86(7): 5305-5316, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33729800

RESUMO

Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH═CHCOOBH2NH2BH3-, PhCH═CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.

17.
Phys Chem Chem Phys ; 23(43): 24627-24633, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34719698

RESUMO

Quantum chemistry is used to investigate the nature of protonated N-heterocyclic carbene (NHC·H+) catalysed decarboxylation recently reported by Zhang et al. (ACS Catal., 2021, 11, 3443-3454). Our results show that there are strong electrostatic effects within the NHC·H+ catalysed decarboxylation, and these dominate hydrogen bonding. At the same time, energy decomposition analyses and comparison between the original NHC·H+ catalyst and a truncated form reveal that stabilizing dispersion interactions are also critical, as is induction. We also show that the electrostatic effects and their associated catalytic effects can be further enhanced using charged functional groups.

18.
PLoS Genet ; 14(10): e1007695, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30286083

RESUMO

INDUCER OF CBF EXPRESSION 1 (ICE1) encodes a MYC-like basic helix-loop-helix (bHLH) transcription factor playing a critical role in plant responses to chilling and freezing stresses and leaf stomata development. However, no information connecting ICE1 and reproductive development has been reported. In this study, we show that ICE1 controls plant male fertility via impacting anther dehydration. The loss-of-function mutation in ICE1 gene in Arabidopsis caused anther indehiscence and decreased pollen viability as well as germination rate. Further analysis revealed that the anthers in the mutant of ICE1 (ice1-2) had the structure of stomium, though the epidermis did not shrink to dehisce. The anther indehiscence and influenced pollen viability as well as germination in ice1-2 were due to abnormal anther dehydration, for most of anthers dehisced with drought treatment and pollen grains from those dehydrated anthers had similar viability and germination rates compared with wild type. Accordingly, the sterility of ice1-2 could be rescued by ambient dehydration treatments. Likewise, the stomatal differentiation of ice1-2 anther epidermis was disrupted in a different manner compared with that in leaves. ICE1 specifically bound to MYC-recognition elements in the promoter of FAMA, a key regulator of guard cell differentiation, to activate FAMA expression. Transcriptome profiling in the anther tissues further exhibited ICE1-modulated genes associated with water transport and ion exchange in the anther. Together, this work reveals the key role of ICE1 in male fertility control and establishes a regulatory network mediated by ICE1 for stomata development and water movement in the anther.


Assuntos
Fatores de Transcrição/fisiologia , Arabidopsis/genética , Fertilidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Pólen/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Environ Manage ; 290: 112548, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33878628

RESUMO

Large amounts of silicon cutting waste (SCW) are generated during Si wafers producing process. In this paper, SCW was mixed with Al powder to prepare Al-Si alloys by a one-step smelting process in corundum crucibles. The influences of smelting temperature (1000 °C, 1200 °C and 1500 °C) on the products of each zone (surface layer zone, loose granular zone and blocky products zone) were investigated. Al-Si alloys in the form of granular and blocky were prepared and the blocky Al-Si alloys mainly concentrated in the blocky products zone. The increase of smelting temperature can promote the aggregation of Al-Si alloy particles. The yields of Al-Si alloy blocks obtained at 1000 °C, 1200 °C and 1500 °C were 0%, 58% and 69%, respectively. The Si contents of Al-Si alloy blocks at 1200 °C and 1500 °C were 15.8 wt% and 17.1 wt% respectively. After compacting the raw materials, the yields of the blocky Al-Si alloys obtained at 1000 °C, 1200 °C and 1500 °C were increased to 65%, 72% and 79% and the corresponding Si contents of the blocky Al-Si alloys were increased to 16.0 wt%, 16.5 wt% and 17.3 wt% respectively. The reaction mechanism of the alloying process was also investigated.


Assuntos
Ligas , Silício , Óxido de Alumínio , Diamante , Temperatura
20.
Angew Chem Int Ed Engl ; 60(14): 7913-7919, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33443785

RESUMO

The use of functionalized aldimines has been demonstrated as newly structural 1,4-dipole precursors under carbene catalysis. More importantly, enantiodivergent organocatalysis has been successfully developed using carbene catalysts with the same absolute configuration, leading to both (R)- and (S)- enantiomers of six-membered heterocycles with quaternary carbon centers. This strategy features a broad substrate scope, mild reaction conditions, and good enantiomeric ratio. DFT calculation results indicated that hydrogen bond C-H⋅⋅⋅F interactions between the catalyst and substrate are the key factors for controlling and even switching the enantioselectivity. These new 1,4-dipoles can also react with isatin and its imines under carbene catalysis, allowing for access to the spiro oxindoles with excellent enantiomeric ratios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA